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Essential equations of the t-matrix

approximation above Tc

For the reader convenience, we recall the essential
equations of the t-matrix approximation for T > Tc that
were originally reported in Ref.[1]:

Σ(k, ωn) = −T
∑

ν

∫

d3q

(2π)3
Γ(0)(q, Ων)

×G(0)(q − k, Ων − ωn), (1)

Γ(0)−1

(q, Ων) = −

m

4πaF
−

∫

d3k

(2π)3

×

[

T
∑

n

G(0)(k, ωn)G(0)(q − k, Ων − ωn) −
m

k2

]

, (2)

G−1(k, ωn) = G(0)−1

(k, ωn) − Σ(k, ωn), (3)

n = 2T
∑

n

ei0+ωn

∫

d3k

(2π)3
G(k, ωn). (4)

Here, G(0)(k, ωn) is the “bare” fermion propagator given

by G(0)−1

(k, ωn) = iωn − ξ(k) [ξ(k) = k2/(2m) − µ be-
ing the free-particle dispersion measured with respect to
the chemical potential µ], m is the free-fermion mass,
ωn = πT (2n + 1) (n integer) and Ων = 2πTν (ν integer)
are, respectively, fermionic and bosonic Matsubara fre-
quencies at temperature T . These equations have been
solved numerically according to the procedures described
in detail in Ref. [1]. The chemical potential is eliminated
in favor of the density n via Eq. (4). The extension of
the above set of equations to the superfluid phase was
reported in Ref. [2].

Connection between the contact intensity for the

whole trap and for a homogeneous system

It is interesting to compare the values of Ct obtained
for the whole trap with its approximation obtained from
Eq.(2) of the main text, whereby one identifies the
shell at rmax corresponding to the maximum of the ra-

dial weight function (32/π) r2 [3π2 n(r)]4/3/k4
F , and then

takes Ch(rmax) therein outside the integral. The result of
this procedure at Tc is reported vs the coupling (kF aF )−1

in Fig. S1(a), where the inset shows an example of the
shape of the radial weight function (full line/right scale)
and of Ch(r) (dashed line/left scale) at unitarity. The
good agreement, which results between the calculation
for the trap (full line) and the approximation that se-
lects the contribution of the most important shell (dashed
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FIG. S1: The contact Ct obtained within the t-matrix ap-
proximation for the trapped case, is shown (full line) (a) at
Tc vs the coupling (kF aF )−1, and (b) at unitarity vs T/TF ,
and compared with the approximation (dashed line) that re-
lies on the maximum of the radial weight function. [See the
text for the meaning of the insets.]

line), shows to what an extent the results of Ct for the
whole trap can be used, together with knowledge of the
density profiles, to extract the values of Ch for the ho-
mogeneous case.

The same procedure can be applied to interpret the
temperature dependence of Ct, reported in the inset of
Fig. 4 of the main text and reproduced here in Fig. S1(b)
for convenience (full line). In particular, it is interesting
to understand how the trap averaging washes out the
peak about Tc obtained for the homogeneous case (see



2

Fig. 1(b) of the main text).
To appreciate this effect, we have reported in the inset

of Fig. S1(b) the temperature dependence at unitarity of
the integral of the radial weight function (full line/right
scale) and of Ch(rmax) (dashed line/left scale) from above
to below Tc. While Ch(rmax) retains the characteris-
tic cusp feature of the homogeneous case (with a maxi-
mum at T = 0.8Tc), the steady increase of the integrated
weight for decreasing temperature more than compen-
sates for the decrease of Ch(rmax) when T < 0.8Tc, thus
masking eventually the cusp feature in the integrated
quantity.

The same approximate procedure, that resulted in the
dashed line of Fig. S1(a), can be applied to reproduce
the temperature dependence of Ct at unitarity above Tc,
because in this case the two functions in the integral of
Eq.(2) of the main text have a smooth behavior similar
to that shown in the inset of Fig. S1(a). At given T below

Tc, however, the cusp present in Ch(r) requires us to split

it as the sum of a smooth background C
(b)
h (r) and of a

peaked contribution C
(p)
h (r), yielding approximately:

Ct ≃ C
(b)
h (rmax)

32

π

∫

∞

0

dr r2 [3π2 n(r)]4/3

k4
F

+
32

π

∫

∞

0

dr r2 [3π2 n(r)]4/3

k4
F

C
(p)
h (r) . (5)

These approximate results, from above to below Tc, are
shown by the dashed line in Fig. S1(b) (to which the
second term on the right-hand side of Eq.(5) below Tc

gives at most a 15% contribution).
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