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We exploit the symmetries associated with the stability of the superfluid phase to solve the
long-standing problem of interacting bosons in the presence of a condensate at zero temperature.
Implementation of these symmetries poses strong conditions on the renormalizations that heal
the singularities of perturbation theory. The renormalized theory gives the following:d Fer3
the Bogoliubov quasiparticles as an exact result; fo d =3 a nontrivial solution with the
exact exponent for the singular longitudinal correlation function, with phonons again as low-lying
excitations. [S0031-9007(97)02495-2]

PACS numbers: 03.75.Fi, 11.10.Hi, 67.40.-w

The problem of understanding the low-lying excita-tion parameters to physical quantities, and (iii) achieve
tions from the ground state of an interacting Bose systerthe cancellation of singularities in the response functions
has been one of the major problems of condensed mafi5]. In this way, the number of marginal and relevant
ter theory in the Fifties and Sixties. The first solution running couplings (which are priori necessary to study
to this problem was given by Bogoliubov as a generalthe IR behavior of interacting bosons fdr= 3) is re-
ized Hartree-Fock approximation [1]. Numerous papergiuced to only one, e.g., the longitudinal two-point vertex
were then devoted to analyze the corrections to this agfunction I';;. In addition, we are able to close the equa-
proximate solution [2—12]. Apart from approximations tion for I';, thus providing theexact IR behavior for the
showing a gap in the excitation spectrum, all attempts t@ero-temperature interacting Bose system. The resulting
improve the Bogoliubov approximation encountered thesolution is quite different from the Bogoliubov one despite
difficulty of a singular perturbation theory (PT) plagued the coincidence of the linear spectrum. In particular, we
by infrared (IR) divergences, due to the presence of théee the Gavoret and Noziéres results from the provisions
Bose-Einstein condensate and the Goldstone mode [2,3]posed by the occurrence of IR divergences [3] and recover

A systematic study of these IR divergences has beethe result of Ref. [5] for the anomalous self-energy.
long delayed because they appeared only at intermediate We consider the following action for the Bose system:
steps of the calculations while physical quantities turned B . ' 5
out to be finite [2]. That problems could arise in PTSZfO d’ffdx{iﬂ [0, + pl(x) = (V= iA)p(x)l
was originally recognized by Gavoret and Noziéeres [3];
indeed later [5] it was found that the exact anomalous self- _ l|¢(x)|4 + ()N (x) + ¢*(x)A(x)},
energy (at zero external momentum) has to vanish [13], in 2
contrast with the finite value obtained by the Bogoliubov )
approximation. This result questions the validity of PTwhere (x) [with x = (7,x)] is a bosonic field obeying
and requires a properly renormalized theory. periodic boundary conditions in the imaginary timend

To take care of the IR divergences at arbitrary spatial dif3 is the inverse temperature (we et 1 andm = 1/2).
mensiond greater than 1, we exploit the renormalization-In (1) A(x) and (u(x),A(x))=A,(x) (v = 0,...,d) are
group (RG) approach. In its standard application the RGxternal “sources” introduced to obtain the correlation
approach sums up the singularities of PT and provides thieinctions. At the end of the calculation(x) recovers
power-law behavior of physical quantities which is characthe constant valug. of the chemical potential, whil&
teristic of critical phenomena. Here we deal instead with @and A are left to vanish. The interaction potentialis
stable superfluid phase, for which exact cancellations (intaken to be constant in momentum space, as its momentum
stead of resummations) of singular terms are expected tependence is found to be irrelevant for the IR behavior.
occur in physical response functions. It appears thus cru- The action (1) allows for spontaneous broken gauge
cial to exploit the underlying (local-gauge) symmetry andsymmetry; in that case, it is convenient to distinguish
the related Ward identity (WI) which implement these ex-between longitudinal;) and transversa/{,) components
act cancellations, as required on physical grounds. In thi®o the broken-symmetry direction by setting(x) =
paper we combine the RG approach with the WI to obtaing;(x) + i, (x) and¢™*(x) = ¢,(x) — iy (x) (with a real
the solution to the problem [14]. order parameter).

To be more explicit we use the WI to (i) establish By differentiating the free energyF[A,,A;]=
constraints on the RG procedure, (i) relate renormalizain [ Dy, D y,exp(S} with i=1, t and A= A; +iA,,
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we obtain, as wusual, the connected -correlation Renormalization of the IR divergencies requires a
functions, such as the “condensate wave function’preliminary power counting for the running couplings.
yio=(;(x))=6F/8A;(x) and the one-particle Green This is conveniently done by keeping dimensionless the
function G;; = 8%F/81;8A,. It is further convenient minimal set of couplings u;, wi,z,) that yields the

to introduce the Legendre transform df with re- linear part of the Bogoliubov spectrum. We thus rescale
spect to A, T[A,,¢0]= [dxA;(x)io(x) — F[A,,A;], them and the fields by appropriate powers @f In
whose derivatives are the vertex functions..; .,,..,, =  this way, [G,]= -2, [G,]=—1, and[G;]=0, where
5("+’”)1‘/6¢/,-10--~51//i,105AV1-~-5Aym associated with the [A] stands for the engineering dimensions 4&f For
one-particle irreducible diagrams of PT. simplicity, from now on we shall omit indicating:

In the broken-symmetry phase we keep the value ofvhenever not strictly necessary. We thus hwe= —1,
the condensat@y;(x)),—o = o fixed. Accordingly, we [7]=—1, [¢1(x)]=(d +1)/2, [(x)]=(d —1)/2, and
introduce the fieldsy; with vanishing averages for van- [T ey = —ny(d +1)/2 = nid — 1)/2+d + 1.
ishing external sources, such thét(x) = #0 + ¢1(x)  The upper critical dimension isi. =3 [17]. For

and ¢,(x) = ¢,(x). The mean-field propagatoG;; are 4 < 3 the running couplings controlling the IR behav-

then obtained from the quadratic part of the action= " jor have dimensiongvy;] = [w;] = [uy] = [z:] = 0,
—(1/2) 34 i(—k) Qi (k)i (k), where [vi] = €/2, and[v,; ] = €, withe = 3 — d. Although
2 2 _ v, vy, andv,, would be strongly relevant, they vanish
Q(k) = 2( 3vgio — p Tk 2 @n ) ) (2) identically for vanishing external sources.
W viip — p + k

. ) . One could proceed at this point and derive the RG
with k = (iw,, k) (w0, being a Matsubara frequency). oq ations for the running couplings. As mentioned above,
In the following we conS|de_r the zero-temperature I'm'thowever, contrary to critical phenomena in the present
yvhere @n becor_nes a continuous van_qbte.z Enforc-  case of a stable phase, a singular PT has to result in
ng the mean-field BOgo“,UbOV condltlgrzplo ?é“[}’ finite response functions. It is clear that cancellations
yields thze IR , 7?ehaV|or G ~2(‘”2 + Cgkz)fl’ of IR divergences in physical quantities signal definite
G ~ w(w® + k)", and Gy ~ k*@” + k)™, connections among the running couplings. In the present
where c) = 2u is the mean-field value of the sound c,pieyt these connections stem from the local gauge

velocity. This singular IR behavior is associated Withsymmetry and are obtained by examining the associated
the presence of the Goldstone mode. Recall that iRy arq identities [15].

the standardy representation the Bogoliubov propaga- |, oyr formalism the Wi result from the local-gauge
tors  [Gi(k) = Gu(—k) = Gu(k) + Gu(k) = 2iGi(k) " invariance of the functional’, namely,
and Gun(k) = Guk) = —Gu(k) + Gu(k)] share a
common (o2 + ¢Zk?)"! IR behavior and the normal I'[A, + 0,a(x),Rijla(x)]#jo] = T[A,, ¥io], ()
[211(k) = 2u] and the anomalous;(k) = u] self- Ri;(«) being the two-dimensional rotation matrix with
energies satisfy the Hugenholtz-Pines (HP)_ |dent|tyang|ea in the space of the fieldg; and,. This equa-
211(0) = 212(0) = w [16]. Inthey, representation, on tion follows from the invariance of the action (1) un-
the other hand, the various propagators hdwWierentIR  4er the gauge transformatigh(x) — '@ y(x), A(x) —
behavior since the Goldstone-mode singularity is kept irbia(x)/\(x), andA,(x) — A,(x) + 9,a(x) with a(x) real
the transverse direction. This choice is crucial to selecfnction. Taking successive functional derivatives of (4)
the interaction terms according to their relevance [12]. ity respect tax, ¢o:, andA, yields an infinite set of WI.
To allow for the RG treatment, it is convenient t0 For our purposes only the following five W1 are relevant.

rewrite the matrixQ (k) in a more general form: The first two, which encompass the HP identity, are
) = vy + lek2 + u”wz vy + wpw .
Q(k) = v — Wi v + 2 K2+ ugw? ) Tu(K)go + T,(0) — ik, Tp(=k) =0,  (5)
3) Tu(K)po — T1(0) — ik, Tp(=k) = 0.  (6)

where additional terms (running couplings) have beeri
introduced with respect to (2). We also introduce
running couplings for cubic u;,, vi,...) and quartic
(Vs Vi vun» - . .) interaction terms, where the cubic : )
terms originate from the presence of the condensatéfs\?lars in the one-particle spectrum. The second couple
A perturbative expansion is then set up, as usual, b)? '

regarding the quadratic action associated with (3) as the Tk, k)0 + Tii(—=ka) — Tk + ko)—

free part and the remaining terms as perturbations. In : L _

the absence of external sources and v; vanish by i(k)y Lt (2, =k = k2) = 0, (7)
symmetry, as shown below. The resulting PT, being . R _
massless, is plagued by IR divergences already at the L (ki k2)go = Tu(=ka) = Tulkr + ka)
one-loop level in spatial dimensiah= 3 [2,3]. i(k1)y Ui (ko, —k1 — ko) = 0, (8)

n the limit k&, — 0 they relate the two-point vertices
to the external sources; = I';(0) and state thav, =
I';;,(0) andv,, = I';,(0) vanish whem; = 0. No gap thus
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are the standard WI associated with the continuity equafl2), we obtain from (10) fow; and the definition of
tion, modified now by the presence of the three-pointv;; that the ratiov;,/w;; reduces to—2ngy/(dno/dm)y
vertices. In the limitk; = 0 and k, — 0 they yield in the limit k — 0. Here(dno/dw), is the “condensate
vinb, = vy andvy, = 0. The last of our Wl is compressibility” which has to be finite forth(;:rmodynamic
_ . _ stability. Finally, from the definition of:(s)* and (10)
Lun(ky, ko, k3)no = Tiu(—ka = ks, ko) we obtain thatc(s)? reduces toc? in the limit s — 0,
Cip(ky + k3, ko) — Di(ky + ko, k3)— where now ¢ = 2n,/(dn/du), is the square of the
. P _ macroscopic sound velocityn (being the density and
ki) s (ko s, =kt = o = ka) = 0, (9) " n, at zero temperature). By the very stability of
from which we obtairw,,,1,0/3 = vy, for vanishingk’s.  the bosonic system;? is free from IR divergences, thus
From the above WI we also relate the running couplingssuggesting that(s) is finite and does not scale withi.e.,
to the (composite) current vertices and response functiong(s) = ¢ = ¢, apart from finite corrections originating

Specifically, in the limitk — 0 we obtain from nonsingular terms that do not enter the RG flow.
1 92T 1 92T 2n, Exploiting the first and second of (12), we verify that the
w = — . u = ——— s Z = — s ' — H
It Do 09 1t g0120 a2y 1 %20 conditionc(s) = const reduces to the third of (12).

The proof of the above statements is as follows,,
(10)  has to remain constant by inspection of the WI (6),

where n, is the superfluid density (Josephson identity).Which shows that the divergence gf expected by power
We also havev; = (92I'/ay}), by its very definition counting is actually not present, since it is related to
[18]. We are left eventually with four running couplings, nondiverging quantitiesw;, can instead be identified with
namely, vy, wi, uy, andz,, whose IR behavior can be vu Via the WI (7) and (8), which relate;, to I';, and
obtained exactly. wy to T'y0, respectively, the latter identification being
As a guide to the procedure for obtaining this behaviorobtained from thew derivative of (8). By inspection of

the RG equations will be evaluated at the one-loop levelthe leading singular terms to all orders in PIT,, and

Exploiting the e expansion and the minimal subtraction I'+ are then found to be proportional to each other [20];
technique we get by the same procedure, the invariancec6f) implied by

the last of (12) follows from the exact connection between

2
v _ ﬁ;’”z , e _ € '_’121 Wéf , the singular parts of oo andT';;, associated, respectively,
ds 240 zit ds 2, zit with u,, andvy;.
sd”” _ cw S& _ (11) D_etermining the IR b_ehavior i_s thus gxactly reduced to
ds 20222 ds ’ solving for asinglerunning coupling, for instance;;. In

] ) ] particular, at the one-loop order we obtain
where s = k//k is the scaling factor £ being the

normalization point)c(s)? = vy (s)z(s)/[vu(s)uy(s) + uu(1) 1 — 212/51”)—21)(1)21“ (e =0),
wy(s)?] is the square velocity entering the one-particle —— = (e — 1) (13)
propagator according to (3) andy(s) = ox€/2s¢/? vi(s) L+ o mmmee 0<e<2).

[19]. Whend = 3 Egs. (11) are equivalent to those of In both casesu 0 ;

. . 17— 0 ass — 0, while for e <0 vy
Ref. [12.]’ _prow_o!ed th_e coupllnzg of R?f' [12] an_alogous remains finite. We show below that the asymptotic
to vy, is identified with3v; /i, consistently with the behavior (13) ofv; is actually exact.

abovg results. . . The one-particle Green function resulting from (12) and
Quite generally, the solutions of the coupled equatlon?13) have the form [19]

(11) take the form

Ztt(s) = th(l) Wlt(s) = U][(l) Ull(s)s ) - C’éo:;%—e k€ (0 <e< 2) vy ’
wi(1)? wi(1)? (12) dng c? w w1 w
up(s) = uy(1) + - vy(s). N="2— . - =
u(s) (1) vy (1) vy (1)? u G () du 4ng 0? + c?k?2 vy 2 k2 + w?/c?
This implies that it is sufficient to determing; (s). 2no 1 1 1

Although we have derived (12) at the one-loop orderG, (k) = —————— ~ ——,
we expectthem to hold exactly on physical ground 2n; w2+ k2 K2 w2/
owing to the identification (10) of the renormalization where the asymptotick(— 0) values of the running cou-
parameters with physical quantities. To begin with, theplings have been identified via (10). Note that the IR
s — 0 value of z,, is the ration,/ny of finite physical behavior ofG;; and G, is completely and exactly deter-
quantities o = % being the condensate density) somined by the conditions (12) and is independent frém
that divergences compensate each other in its expressicand the behavior of;;. InsteadG; diverges logarithmi-
leading to the first of (12). Regarding the second ofcally ask — 0 whend = 3 and likek € for 1 <d <3
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