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Dispersions, weights, and widths of the single-particle spectral function in the
normal phase of a Fermi gas
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The dispersions, weights, and widths of the peaks of the single-particle spectral function in the presence of
pair correlations, for a Fermi gas with either attractive or repulsive short-range inter-particle interaction, are
determined in the normal phase over a wide range of wave vectors, with a twofold purpose. The first one is to
determine how these dispersions identify both an energy scale known as the pseudogap near the Fermi wave
vector as well as an additional energy scale related to the contact C at large wave vectors. The second one is
to differentiate the behaviors of the repulsive gas from the attractive one in terms of crossing versus avoided
crossing of the dispersions near the Fermi wave vector. An analogy will also be drawn between the occurrence
of the pseudogap physics in a Fermi gas subject to pair fluctuations and the persistence of local spin waves in the
normal phase of magnetic materials.
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I. INTRODUCTION

Local order of short-range nature in the normal phase of
an ultracold Fermi gas above the superfluid temperature Tc

has recently been the subject of intense interest, owing to
experimental and theoretical advances, which have hinged on
this local order from different perspectives.

The experimental interest1,2 has mostly focused on the issue
of the pseudogap �pg, which is a low-energy scale that in
these systems evolves in temperature with continuity out of
the pairing gap present in the broken-symmetry (superfluid)
phase.3 On physical grounds, this continuous evolution is due
to the persistence of “medium-range” pair correlations, which
are the remnant above Tc of the long-range order below Tc.

The theoretical interest has been prompted, on the other
hand, by the introduction of a number of universal relations due
to Tan,4,5 which are due to the interparticle interaction being of
the contact type and affect several physical quantities. These
universal relations all depend on a coupling- and temperature-
dependent quantity named the contact C, which can in turn be
conveniently expressed in terms of a high-energy scale �∞.6

The fact that C specifies, in particular, the strength of “short-
range” pair correlations between opposite spins implies that,
in ultimate analysis, the high-energy scale �∞ associated with
C and the low-energy scale �pg associated with the pseudogap
both originate from the same kind of pair correlations, which
remain active above Tc even in the absence of long-range order.

In this paper, we aim at organizing these two energy scales
into a single wave-vector-dependent function �(k), of which
�pg represents the value about the Fermi wave vector kF and
�∞ its behavior for k much larger than kF , corresponding
to medium- and short-range pair correlations, in the order.
In practice, from the numerical calculations, it is meaningful
to determine the values of �(k) just in these two intervals,
namely, for k ≈ kF (obtaining �pg) and k � kF (obtaining
�∞). This wave-vector dependence arises even though the
interparticle interaction is of the contact type, which at the
mean-field level below Tc would instead give rise to a wave-
vector independent gap.

To this end, we shall analyze in detail the dispersions of
the peaks of the single-particle spectral function for various

couplings across the BCS-Bose-Einstein condensation (BEC)
crossover and temperatures above Tc, and show how they can
rather accurately be represented by BCS-like dispersions with
a characteristic “back bending” for the occupied states.1,2

These dispersions will be obtained within the t-matrix
approximation for an attractive interparticle interaction
following the approach of Ref. 7, which was recently applied
to account for the experimental data on ultracold Fermi gases.8

In addition, we will show that the weights of the two peaks
of the single-particle spectral function can also be described
by BCS-like expressions. Determining these weights will
also be useful to obtain the asymptotic value of �(k) for
large k, where tracing the dispersions may become ill defined
owing to the strong broadening of the large-k structure of the
single-particle spectral function at negative frequencies.

The importance of determining the weights (besides than
merely focusing on the existence of the pseudogap) is in line
with the emphasis that was given from the early days of the
BCS theory of superconductivity to the role of the “coherence
factors.” Their presence, in fact, made the BCS theory soon
accepted as the correct one, because it was then possible to
account for the counterintuitive outcomes of different experi-
ments that could otherwise not be understood only on the basis
of the occurrence of a gap in the single-particle spectrum.9,10

The crossed check between the dispersions and weights of
the two branches of the single-particle spectral function will
therefore represent a fingerprint of the survival in the normal
phase of typical BCS-like features due to strong pairing fluc-
tuations. Differences, however, between the broken-symmetry
phase below Tc and the pseudogap phase above Tc will mostly
appear in the widths of the peaks of the single-particle spectral
function, which are much broader above than below Tc as
expected in the absence of a truly long-range order.

In this context, we shall also resume an argument that was
raised in Ref. 11, according to which the occurrence of the
above mentioned back-bending for k � kF should not reflect
per se the presence of a pseudogap for k about kF . This
is because the structure at large k, which is related to the
contact C, can be found even in a normal gas with repulsive
interparticle interaction.
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Accordingly, we shall argue that the main differences,
between the features of the single-particle spectral function
for a Fermi gas with repulsive or attractive interaction in the
normal phase, appear actually for k about kF . Specifically, an
avoided crossing results in the dispersions of the two peaks of
the single-particle spectral function in the attractive case, while
a crossing occurs in the repulsive case. In the attractive case,
the energy spread of the avoided crossing is directly related
to the pseudogap energy scale �pg. On physical grounds,
this difference between avoided crossing and crossing is a
consequence of particle-hole mixing, which survives at a local
level in the attractive case when passing from below to above
Tc but is absent in the repulsive case.

The overall purpose here, therefore, is not to establish
specific criteria for the existence of a pseudogap phase in
a Fermi gas with attractive interaction. Rather, we shall be
interested in framing the total amount of information, which
can be extracted from the single-particle spectral function of an
interacting Fermi gas subject to pairing fluctuations above Tc,
into a unified picture where analogies and differences with
respect to a simple BCS-like description below Tc can be
emphasized.

It is, nevertheless, relevant to provide at this point an (albeit
concise) overview of the major relevant work done previously
by several groups on the issue of the pseudogap, also to recall
how this concept had developed in the context of a Fermi gas
with attractive interaction. The prediction for the existence
of a pseudogap in the normal phase of strongly interacting
ultracold Fermions was introduced in Ref. 12 within a two-
channel fermion-boson model and in Ref. 13 within a single-
channel fermion model, before the observation of superfluidity
in these gases. These works were, in turn, based on earlier
studies that applied the physics of the BCS-BEC crossover to
the high-temperature cuprate superconductors. In that context,
initial work interpreted the normal state of a superfluid in
the crossover regime between BCS and BEC as a phase of
uncorrelated pairs14 or as a spin-gap phase.15 Later, it was
shown that this phase reflects a normal phase pseudogap, which
displays peculiar features in the fermionic spectral function
that reflect the presence of a pairing gap in the superfluid
phase.7,16 Extensive theoretical work on the pseudogap issue
for a Fermi gas with attractive interaction was reported more
recently in Refs. 17–22.

Finally, in the present paper, a similarity will be high-
lighted between the pseudogap physics resulting from pairing
fluctuations above Tc and the persistence of spin waves over
limited spatial regions in the normal phase of ferromagnetic (or
antiferromagnetic) materials. Besides being of heuristic value
for envisaging the local order associated with the pseudogap,
this analogy evidences how the current debate about the
occurrence of a pseudogap in an ultracold Fermi gas retraces a
similar debate that went on for some time about the persistence
of spin waves in magnetic materials.

The paper is organized as follows. In Sec. II, the dispersions,
weights, and widths of the peaks in the single-particle spectral
function for the attractive case are studied in detail, to
determine how the energy scale associated with the pseudogap
about kF evolves for large k toward the energy scale associated
with the contact C. In Sec. III, the single-particle spectral
function for the repulsive case is contrasted with that for

the attractive case, to bring out the issue of the crossing
versus avoided-crossing of the dispersion relations about kF ,
which clearly differentiates between the two cases. In Sec. IV,
an analogy is drawn between the pseudogap physics and
the persistence of spin waves in magnetic materials, and a
suggestion is made for an additional experimental evidence for
the occurrence of a pseudogap. The Appendix gives analytic
details about the treatment of pair fluctuations in the repulsive
case to obtain the single-particle spectral function over a wide
range of k.

II. THE ATTRACTIVE CASE: PSEUDOGAP
VERSUS CONTACT

In this section, we consider a homogeneous Fermi gas with
an attractive interaction v0δ(r − r′) of short range between
opposite spin atoms with equal populations, whose strength v0

can be eliminated in favor of the scattering length aF via the
relation

m

4 π aF

= 1

v0
+

∫ k0 dk
(2π )3

m

k2
. (1)

Here, m is the particle mass, k is a wave vector, and k0 is a
wave-vector cutoff that can be let → ∞ while v0 → 0 in order
to keep aF at a desired value (we set h̄ = 1 throughout).

Since v0 < 0, aF can be positive as well as negative,
and the dimensionless interaction parameter (kF aF )−1 ranges
from (kF aF )−1 � −1 in the weak-coupling (BCS) regime, to
(kF aF )−1 � +1 in the strong-coupling (BEC) regime, across
the unitary limit where |aF | diverges and (kF aF )−1 = 0. In
practice, the BCS-BEC crossover region of most interest is
limited to the interval −1 � (kF aF )−1 � +1.

In the superfluid phase, well below Tc, a description of the
BCS-BEC crossover results already at the mean-field level,
while in the normal phase above Tc, inclusion of pairing
fluctuations is required to get physically meaningful results.
Pairing fluctuations, in particular, turn the characteristic BCS
mean-field energy gap below Tc into a pseudogap above Tc, as
discussed next.

A. Mean-field description below Tc

The simplest description of the BCS-BEC crossover results
within mean field for temperatures T below Tc, by supple-
menting the equation for the BCS gap �,∫

dk
(2π )3

[
1 − 2f (Ek)

2Ek
− m

k2

]
= − m

4 π aF

, (2)

with the density equation

n =
∫

dk
(2π )3

{
f (Ek)

(
1 + ξk

Ek

)

+ [1 − f (Ek)](1 − ξk

Ek
)

}
. (3)

Here, Ek =
√

ξ 2
k + �2 with ξk = k2/(2m) − μ and f (E) =

[eE/(kBT ) + 1]−1 is the Fermi function (μ being the fermionic
chemical potential and kB the Boltzmann constant). Note that
the mean-field gap � does not depend on k = |k| owing to the
short-range nature of the interparticle interaction.
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FIG. 1. (Color online) Dispersion relations (left panels) and
corresponding weights (right panels) for three different couplings
as obtained at T = 0 within mean field (dashed-dotted lines) and at
Tc with the inclusion of pairing fluctuations (diamonds). Energies are
in units of EF .

When one looks at the structures of the single-particle
spectral function A(k,ω) within the BCS approximation, at
a given k, two sharp peaks appear centered at the frequency
values

ω = ±Ek (4)

with weights (1 ± ξk/Ek)/2, respectively.23

The dispersion relations (4) and the corresponding weights
are shown in Fig. 1 for three characteristic couplings across
the BCS-BEC crossover at zero temperature (dashed-dotted
lines). Here, EF = k2

F /(2m) is the Fermi energy with kF =
(3π2n)1/3.

B. Pairing fluctuations above Tc

The above picture gets somewhat modified when pairing
fluctuations beyond mean field are considered below Tc.24 It
is, however, above Tc that inclusion of pairing fluctuations
alters mostly the behavior of A(k,ω) from its trivial mean-field
description with � = 0, whereby only a single sharp peak of
unit weight survives consistently with a Fermi-liquid picture.9

In the context of the BCS-BEC crossover, a nontrivial
behavior of the spectral function (at and) above Tc results when
including pairing fluctuations within the t-matrix approxima-
tion. It is still possible to identify two peaks in A(k,ω) for
given k over an extended range of coupling and temperature,
by locating their positions and determining their weights and
widths. It is found that the positions of these peaks can be rather
well represented by a BCS-like dispersion of the form (4),
provided the mean-field � is replaced by a “pseudogap” value
�pg that remains finite above Tc. This finding was explicitly
demonstrated in Ref. 7 only for the dispersion relations not too
far from kF and on the BCS side of the crossover.

As an example, we report in Fig. 1 the dispersion relations
and weights of the two peaks of A(k,ω) at Tc for three
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FIG. 2. (Color online) Single-particle spectral function A(k,ω) vs
ω at unitarity within mean field at T = 0 (dashed-dotted lines) and
with the inclusion of pairing fluctuations at Tc (full line), for the wave
vector where the maximum of the lower dispersion relation occurs in
both cases (see text).

couplings across the BCS-BEC crossover, obtained according
to the t-matrix approximation (diamonds).7 In all cases, the
similarity with the corresponding values obtained for these
quantities within mean field at T = 0 (dashed-dotted lines)
appears striking.

Marked differences appear instead for the widths of the
peaks of A(k,ω), when passing from the mean-field description
below Tc where they are deltalike, to the t-matrix description
(at and) above Tc where they are broad and overlapping.
This is shown in Fig. 2, where A(k,ω) is plotted versus ω at
unitarity for the wave vector where the maximum of the lower
dispersion relation occurs (that is, 0.76 kF within mean field
at T = 0 and 0.91 kF with the inclusion of pairing fluctuations
at Tc). This picture also evidences how a real gap at T = 0
transforms into a pseudogap at Tc, through a partial filling of
the spectral function in the region between the two peaks. In
the present paper, we shall dwell extensively on this and related
ideas.

The t-matrix approximation that we adopt in this paper to
obtain A(k,ω) above Tc corresponds to the following choice
of the fermionic self-energy:7

�(k,ωn) = −
∫

dq
(2π )3

kBT
∑

ν

	0(q,
ν)

× G0(q − k,
ν − ωn), (5)

where ωn = (2n + 1)πkBT (n integer) and 
ν = 2νπkBT (ν
integer) are fermionic and bosonic Matsubara frequencies,
in the order, G0(k,ωn) = (iωn − ξk)−1 is the bare fermionic
single-particle Green’s function, and 	0(q,
ν) is the particle-
particle ladder given by

−	0(q,
ν)−1 =
∫

dk
(2π )3

[
kBT

∑
n

G0(k,ωn)

× G0(q − k,
ν − ωn) − m

k2

]
+ m

4πaF

.

(6)
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The single-particle spectral function is then obtained
through analytic continuation iωn → ω + iη to the real fre-
quency axis (η = 0+):

A(k,ω) = − 1

π

Im�(k,ω)

[ω − ξk − Re�(k,ω)]2 + [Im�(k,ω)]2 .

(7)

The shape of A(k,ω) versus ω thus depends crucially on the
interplay between Re�(k,ω) and Im�(k,ω) for the chosen
value of k = |k|.

A derived quantity of interest is the single-particle density
of states:

N (ω) =
∫

dk
(2π )3

A(k,ω) . (8)

The averaging that this definition introduces on A(k,ω) over
an extended range of k can be of support to the presence of a
pseudogap, in cases when the two peaks of A(k,ω) strongly
overlap just in the range of k where the two branches of the
dispersion come close to each other (cf. Fig. 1). In these cases,
in fact, a strict definition of the pseudogap as a depression
of the spectral weight just in this range of k would lead one
to conclude that pseudogap phenomena were absent in the
single-particle excitations, while they still appear clearly over
a more extended range of k.

C. Inputs from experiments on ultracold Fermi atoms

The original motivation for looking at A(k,ω) has been
the issue of “preformed pairs” in high-temperature (cuprate)
superconductors, before the occurrence of the BCS-BEC
crossover was explicitly demonstrated with ultracold Fermi
atoms (cf., e.g., Ref. 25).

In this context, the interest in the detailed shape of A(k,ω)
above Tc across the BCS-BEC crossover has considerably
raised lately, after a new measurement technique was in-
troduced to probe directly the single-particle excitations of
a Fermi gas.1 Intensity maps were thus obtained for the
single-particle excitation spectra, relating the single-particle
energy to the wave vector. More recently, new measurements
performed over an extended temperature range above Tc

2

have revealed a BCS-like dispersion with a characteristic
“back-bending” close to kF , which identifies a pseudogap
energy scale and persists well above Tc.

This finding gives us motivations for extending the the-
oretical analysis of Ref. 7 for the dispersions of the peaks
of A(k,ω) across the unitary region, although the widths of
the peaks can increase considerably with respect to the BCS
side, reflecting the fact that quasiparticle excitations may be
poorly defined. Specifically, the combined experimental and
theoretical analysis of Ref. 8 suggests to concentrate our efforts
in the coupling range approximately between (kF aF )−1 = 0
and 0.4.

D. Emergence of the contact in A(k,ω)

Yet, it was pointed out11 that the persistence of the back-
bending for large k (�kF ) is dominated by interaction effects
that do not reflect the pseudogap close to kF . Rather, it
is connected with the universal k−4 tail of the wave-vector

distribution n(k) of a dilute Fermi gas, whose coefficient is
given by the Tan’s contact C.4,5

This property can be readily verified within the t-matrix
approximation that we use to obtain A(k,ω). When k2/(2m)
or |ωn| are much larger than the energy scales kBT and |μ|, in
fact, the self-energy (5) can be approximated by

�(k,ωn) � − 1
2 nf 	0(k,ωn) − �2

∞ G0(k, − ωn). (9)

Here,

nf = 2
∫

dk
(2π )3

nf (k) (10)

with

nf (k) = kBT
∑

n

eiωnη G0(k,ωn) (11)

is the free density associated with G0 for given μ, and

�2
∞ =

∫
dq

(2π )3
kBT

∑
ν

ei
νη 	0(q,
ν) (12)

is the square of the high-energy scale introduced in Ref. 6 that
was mentioned in the Introduction. The two terms on the right-
hand side of the approximate expression (9) originate from the
singularities in the complex frequency plane of the single-
particle Green’s function G0 and of the particle-particle ladder
	0, in the order, once the sum over the Matsubara frequency in
the expression (5) of the fermionic self-energy is transformed
into a contour integral.

Analytic continuation iωn → ω + iη to the real frequency
axis then results into the following approximate expression for
large k:

A(k,ω) �
(

1 − �2
∞

4 ξ 2
k

)
δ(ω − ξk) + �2

∞
4 ξ 2

k

δ(ω + ξk), (13)

which presents indeed a well-defined structure at the negative
frequency ω = −ξk. One obtains, correspondingly,

n(k) =
∫ +∞

−∞
dω f (ω) A(k,ω) � �2

∞
4 ξ 2

k

≈ (m �∞)2

k4
, (14)

yielding the relation C = (m �∞)2 between the contact C and
�∞, which will be extensively used below.

In practice, the structure of A(k,ω) for negative real
ω at large k is not deltalike but spreads over a sizable
frequency range. This difference from the approximate result
(13) stems from the noncommutativity between taking the
analytic continuation and performing the large-k expansion
of the self-energy, as recalled in the Appendix. Neverthe-
less, the actual structure of A(k,ω) for negative ω pre-
serves the same total area �2

∞/(4 ξ 2
k ) found above in the

expression (13).

E. Connecting the two energies �pg and �∞

With these premises, it seems natural to frame the low-
energy scale �pg and the high-energy scale �∞ into a unified
physical picture, in which they emerge from A(k,ω) in the
two distinct ranges of wave vectors k ≈ kF and k � kF ,
respectively. To this end, we shall extend to the unitary limit
and beyond the analysis that was limited in Ref. 7 to the
BCS side of the unitary region, by following the dispersions,
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last remnant of what would be a Fermi-liquid description of
the Fermi gas if attractive pairing interactions above Tc would
not be considered.8 Nevertheless, the large widths associated
with the peaks of A(k,ω) represent per se an evidence that
a Fermi-liquid description above Tc does not apply in the
presence of pairing fluctuations.

2. Range 2 kF � k � 4 kF

In this range, the structure at negative frequencies in
A(k,ω) becomes so spread and broad that it is meaningless
to determine its dispersion numerically and then try to fit it
by an expression similar to Eq. (15). In this case, however, it
remains meaningful to determine the total area of the broad
structure at negative ω over a chosen mesh of k and then make
a χ2 fit to these values through the following expression, which
is inspired by Eq. (13):

v(k)2
large = �2

large

4
(

k2

2m
− μlarge

)2 , (18)

where �large and μlarge are fitting parameters to be determined
in this range of “large” k.

In practice, it is convenient to set μlarge at the corresponding
value of the thermodynamic chemical potential μ from the
outset (thus leaving �large as the only fitting parameter). This
is because in the coupling range of interest μlarge is small
enough that it becomes meaningless to extract it from the
denominator of Eq. (18) where k2/(2m) dominates in this range
of k.

We will check whether the value of �large determined in this
way coincides with the value of �∞ obtained independently
by the expression (12), and how it differs from the value �pg(−)

of the pseudogap obtained above near the region of the back
bending of the lower branch.

G. Results for dispersions, weights, and widths

We pass to determine the quantities of interest according to
the procedures outlined above. We shall specifically consider
the two coupling values (kF aF )−1 = 0 and 0.25 as representa-
tives of the coupling range where pseudogap phenomena are
expected to be maximal. Two representative temperatures will
also be considered for each coupling.

Figure 3 shows the dispersion relations and weights of the
two peaks of A(k,ω) at Tc when (kF aF )−1 = 0 in the range
0 � k � 2 kF , as obtained from the numerical calculation
based on Eq. (7) and from the fits obtained according to
Eqs. (15)–(17). In this case, the fitting parameters are kL(−) =
0.78 kF and �pg(−) = 0.83EF for the lower branch and
kL(+) = 0.62 kF and �pg(+) = 0.74EF for the upper branch
while μeff = 0.41EF is quite close to the corresponding value
of the thermodynamic potential μ = 0.365EF obtained within
the t-matrix approximation. (The results of the numerical
calculations have already been reported in the central panels
of Fig. 1, although with the different purpose of comparing
them with the mean-field description at T = 0.)

In this case, the BCS-like fits are excellent for the
dispersions and quite good for the weights, especially near
the value k = 0.64 kF where the weights exchange with one
another. Note also that, while the numerical values of the
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FIG. 3. (Color online) Dispersions (upper panel) and corre-
sponding weights (lower panel) at unitarity and T = Tc. Circles
(squares) and full (dashed) lines represent the results of the numerical
calculation and of the BCS-like fits for the lower (upper) branch at
negative and positive frequencies, respectively. Energies are in units
of EF .

weights for each value of k are specular to each other about one
half, the fitted values are not always so indicating deviations
from their sum being unity.

This success of a BCS-like interpretation for the dispersions
and weights of the peaks should be complemented by the
further information about their widths. This is done in Fig. 4,
where in the upper panel, the shape of A(k,ω) at Tc and
(kF aF )−1 = 0 is shown explicitly for several wave vectors,
while in the lower panel, the corresponding widths of the
peaks at negative and positive frequencies are reported over a
wider set of wave vectors.

In all cases, the widths are rather large (being comparable to
EF ) and show strong deviations from what would be expected
for a Fermi-liquid picture, according to which they should
acquire a minimum value at about kF . These deviations from
a Fermi-liquid picture are of course expected for a Fermi gas
with attractive interaction, taking further into account that at
unitarity the value of Tc is a considerable fraction of the Fermi
temperature TF , whereas a Fermi-liquid description holds only
for T � TF .27

The above analysis of pseudogap phenomena around kF is
expected to remain meaningful for temperatures larger than
Tc, but not exceeding the pair-breaking temperature scale T ∗
where a “preformed-pair scenario” is bound to fade away.
In particular, at unitarity, the value of T ∗ (as estimated
by the mean-field critical temperature) is about twice the
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FIG. 4. (Color online) Unitarity limit and T = Tc.
Upper panel: A(k,ω) vs ω for the wave vectors
k = (0.6,0.7,0.8,0.9,1.0,1.1,1.2) kF corresponding to the peaks at
negative frequency from top to bottom (here full and dashed lines
alternate to help the analysis of the figure). Lower panel: Widths (in
units of EF ) of the peaks at negative (circles) and positive (squares)
frequencies.

value of Tc given by the t-matrix approximation we are
considering.13,28 As a representative case of a temperature
above Tc, Fig. 5 shows the dispersions and weights obtained
from A(k,ω) at unitarity and T = 1.2 Tc. The fitting param-
eters are now kL(−) = 0.99 kF and �pg(−) = 0.48EF for the
lower branch and kL(+) = 0.69 kF and �pg(+) = 0.62EF for
the upper branch while μeff = 0.48EF (to be compared with
the thermodynamic value μ = 0.39EF ).

Note that in this case, the analysis of the dispersion of
the lower branch had to be interrupted over a non-negligible
interval of k about kF , because in this interval, the structure of
A(k,ω) at negative frequencies is almost completely masked by
the stronger structure at positive frequencies. This represents
a signal that pseudogap phenomena are beginning to fade
away at this temperature. We have nevertheless performed
a BCS-like fit to the part of the dispersion that can still be
clearly identified, as shown by the full curve in the upper
panel of Fig. 5. By our procedure, no problem instead arises
in identifying the corresponding weights reported in the lower
panel of Fig. 5, which follow again a BCS-like dispersion
although with less accuracy than those shown at Tc in Fig. 3.
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FIG. 5. (Color online) Dispersions (upper panel) and weights
(lower panel) at unitarity and T = 1.2 Tc. Conventions are as in Fig. 3.

The corresponding shapes of A(k,ω) vs ω for a chosen
set of k across kF are shown explicitly in the upper panel
of Fig. 6, from which one can appreciate the phenomenon
mentioned above, when the structure of A(k,ω) for the lower
branch becomes a shoulder attached to the structure of the
upper branch. The corresponding broadenings of these two
structures are reported in the lower panel of Fig. 6, which
reinforces our conclusion about the non-Fermi-liquid nature
of the system.

A question naturally arises, about whether or not these
profiles of A(k,ω) still allow one to identify the presence of a
pseudogap in the crucial range of wave vectors about kF . As
the upper panel of Fig. 5 shows, in fact, an overall BCS-like fit
to the lower branch can be attempted even in this case, because
the two structures of A(k,ω) remain distinct from each other
away from kF .

The relevance of this restricted interval about kF can be
strongly reduced by averaging the profiles of A(k,ω) over all
wave vectors, in the way it is done in the definition (8) of the
single-particle density of states N (ω). Figure 7 shows a plot of
N (ω) vs ω at unitarity for several temperatures at and above
Tc.29 For increasing T , the depression of N (ω) near ω = 0
well survives for T = 1.2 Tc at which the dispersion of the
lower branch near kF in Fig. 5 had to be interrupted, and
progressively disappears for temperatures somewhat below
the pair-breaking temperature scale T ∗. That the depression
of density of states survives at temperatures higher than the
crossover temperature where the pseudogap features disappear
in the spectral function was previously discussed in Refs. 16
and 18. At about T ∗, N (ω) for ω = 0 coincides (within a few
percent) with its noninteracting value evaluated at the same
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FIG. 6. (Color online) Unitarity limit and T = 1.2 Tc. Upper
panel: A(k,ω) vs ω for the same wave vectors as in the upper panel of
Fig. 4. Lower panel: widths (in units of EF ) of the peaks at negative
(circles) and positive (squares) frequencies.

temperature and chemical potential, indicating that all effects
of pairing have faded away at ω = 0 (although they will persist
at higher temperatures for ω � −EF , indicating the survival
of the “contact” even at quite high temperatures30). The density
of states obtained within mean field at zero temperature is also
reported for comparison in Fig. 7, and shows two sharp peaks
located at ±� with � = 0.69 EF .

It is important to extend the above analysis past the
unitarity limit to the BEC side of the crossover (but still
before the pseudogap turns into a real gap associated with
the binding energy of the composite bosons that form in the
BEC limit). To this end, Fig. 8 shows the dispersions and
weights at Tc for the coupling (kF aF )−1 = 0.25, together with
the corresponding BCS-like fits where now kL(−) = 0.77 kF

and �pg(−) = 1.09EF for the lower branch and kL(+) =
0.28 kF and �pg(+) = 0.91EF for the upper branch while
μeff = 0.09EF (which in this case almost coincides with the
thermodynamic value). Compared with Fig. 3, the dispersions
have now become quite flat in the range 0 < k � kF , while
the two weights cross at smaller value of k. At even stronger
couplings, the lower dispersion bends down and the upper
dispersion bends up already at k = 0 while the weights always
remain well separated from each other for all k [as it is shown
in the lower panels of Fig. 1 for the coupling (kF aF )−1 =
1.0].

For completeness, Fig. 9 shows the corresponding shapes
of A(k,ω) across kF (upper panel) as well as the broadenings
of two structures of A(k,ω) (lower panel).
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FIG. 7. (Color online) Density of states per spin component vs
ω calculated at unitarity within the t-matrix approximation for the
temperatures: T = Tc (full line), T = 1.2 Tc (long-dashed line), T =
1.4 Tc (short-dashed line), and T = 1.65 Tc (dot-dashed line). In the
present case, T ∗ ≈ 2 Tc. The dotted line shows the corresponding
mean-field result when T = 0. The noninteracting value mkF /(2π 2)
of N (ω = 0) at T = 0 is used for normalization.

When the coupling increases toward the BEC regime, the
pair-breaking temperature T ∗ increases more markedly than
Tc

13,28 and pairing fluctuations are accordingly expected to
affect A(k,ω) over a progressively wider temperature range
above Tc. We then report in Fig. 10 the dispersions and widths
of the two branches of A(k,ω) for the coupling (kF aF )−1 =
0.25 and the higher temperature T = 1.4 Tc. Again, a signal
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FIG. 8. (Color online) Dispersions (upper panel) and weights
(lower panel) at T = Tc for the coupling (kF aF )−1 = 0.25. Conven-
tions are as in Fig. 3.
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FIG. 9. (Color online) Coupling (kF aF )−1 = 0.25 and T = Tc.
Upper panel: A(k,ω) vs ω for the same wave vectors as in the upper
panel of Fig. 4. Lower panel: widths (in units of EF ) of the peaks at
negative (circles) and positive (squares) frequencies.

that the pseudogap is beginning to fade away emerges from
the analysis of the dispersion for the lower branch, which
has to be interrupted about kF . The fitting parameters are
now kL(−) = 1.03 kF and �pg(−) = 0.60EF for the lower
branch and kL(+) = 0.25 kF and �pg(+) = 0.86EF for the
upper branch while μeff = 0.09EF (to be compared with
the thermodynamic value μ = 0.14EF ). The corresponding
shapes of A(k,ω) across kF and the broadenings of two
structures of A(k,ω) are shown, respectively, in the upper and
lower panels of Fig. 11.

Beginning with Fig. 2, we have often emphasized that
one of the major characteristics of the two structures of
A(k,ω) (at and) above Tc is their substantial broadening, which
may hinder in practice a straightforward identification of the
pseudogap about kF in cases when these structures strongly
overlap with each other. In these cases, however, one may
resort to a two-Lorentzian fit of the two structures of A(k,ω),
which helps separating them. This is shown in Fig. 12, where
the dashed lines represent the two Lorentzians. For instance,
by this type of fit, our previous estimates for the weight (0.29)
and width (0.93EF ) of the structure of A(k,ω) at k = 0.9 kF

corresponding to the lower branch are replaced by 0.28 and
0.77EF , in the order. Comparable deviations are obtained in
the other cases. These results thus confirm the validity of our
previous analysis where the weights and widths were extracted
from A(k,ω) in a simpler fashion.

The numerical values of the dispersions, weights, and
widths that were reported in the previous figures were all
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FIG. 10. (Color online) Dispersions (upper panel) and weights
(lower panel) at T = 1.4 Tc for the coupling (kF aF )−1 = 0.25.
Conventions are as in Fig. 3.

obtained from the detailed profiles of the single-particle
spectral function A(k,ω), which were also shown in the same
figures. It may also be of use, however, to organize the spectra
of A(k,ω) for a range of k and ω into a single intensity plot.
This is done in Fig. 13(a) for the same set of temperatures
and couplings considered in the previous figures. Similar
intensity plots were presented in Refs. 18 and 19. Note that the
logarithmic scale, used here like in the experimental works,1,2

makes the back-bending more evident when compared with
the intensity plots presented in Refs. 18 and 19. For the sake of
comparison with those references, we also report in Fig. 13(b)
the same intensity plots in a linear scale.

Thus far we have concentrated our attention to the range
0 � k � 2 kF where the pseudogap physics manifests itself.
We pass now to discuss the more asymptotic range 2 kF �
k � 4 kF where the contact physics emerges. To this end, we
adopt the procedure outlined in Sec. II F and determine the
parameter �large from the expression (18) with μlarge fixed at
the corresponding value of the chemical potential.

Figure 14 shows the weights of the structure of A(k,ω)
at negative ω for the values of coupling and temperature
considered so far, as determined numerically (circles) over
a mesh of values of k in the range 2 kF � k � 4 kF and then
fitted (full lines) in terms of the expression (18).

These fits are also compared with an expression of the
form (18), where now the low-energy scale �pg(−) that was
previously determined in the range 0 � k � 2 kF replaces
�large (dashed lines). The appreciable deviations from the
numerical values of the weights that result show that the high-
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FIG. 11. (Color online) Coupling (kF aF )−1 = 0.25 and T =
1.4 Tc. Upper panel: A(k,ω) vs ω for the same wave vectors as in
the upper panel of Fig. 4. Lower panel: widths (in units of EF ) of the
peaks at negative (circles) and positive (squares) frequencies.

energy scale �∞ can be distinguished from the low-energy
scale �pg(−) by inspecting the shape of A(k,ω) in different
ranges of k. Note in particular that, as soon as the temperature
is increased above Tc, �pg(−) becomes rapidly smaller than
�∞. This is consistent with our expectation that �∞, being
associated with local pair correlations of shorter range with
respect to �pg, survives at higher temperatures.

A direct comparison of the temperature dependence of
�large and �pg(−) is shown in Fig. 15 for the two couplings
previously considered. Here, squares represent the values of
�large obtained from the fittings reported in Fig. 14, circles are
the values of �∞ obtained independently from the expression
(12), and triangles are the values of �pg(−) determined from
the fittings (15) to the dispersions.

It is evident from this figure that �pg(−) is a much faster
decreasing function of temperature than �∞, which reflects the
slow decay of the contact C at high temperature.30 Note also
that some discrepancy arises between the values of �large and
�∞ at increasing temperature. This is due to the fact that for
increasing temperature, the interval of k from which �∞ can
confidently be extracted should be centered progressively at a
larger value of k, while in Fig. 15 we have kept it at 2 kF � k �
4 kF for all temperatures. In any case, the difference between
�large and �∞ is significantly smaller than that between �∞
and �pg(−). Note finally that at unitarity, �pg(−) and �∞
almost coincide with each other close to Tc. In this case, a
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FIG. 12. (Color online) Two-Lorentzian fits (dashed lines) of
A(k,ω) vs ω (full lines) at unitarity and T = Tc, when k/kF =
(0.6,0.9,1.2) from top to bottom.

single value can be effectively associated with the two energy
scales.

However, the two energy scales soon deviate from each
other not only for increasing temperature above Tc, but also
away from unitarity on the two sides of the crossover. For
instance, in the BCS regime, �∞ = 2π |aF |n/m for T �
(ma2

F )−1 while the pseudogap is exponentially small in the
coupling parameter (kF aF )−1. In the BEC regime, on the other
hand, �∞ =

√
4πn/(m2aF ) for T � (ma2

F )−1 while in this
case, the “real” gap in the single-particle excitations is equal
half the value of the binding energy (ma2

F )−1 of a composite
boson.6

It should be mentioned in this context that, by the alternative
t-matrix approach of Ref. 19, a trace of the pair-fluctuation
propagator [quite similar to Eq. (12) for �2

∞] was interpreted
as representing (the square of) a pseudogap energy for all
couplings and temperatures above Tc, thus making in practice
the high-energy scale �∞ and the low-energy pseudogap �pg

to coincide with each other. This marks a difference between
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