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We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and
bosons. For a boson density smaller than or equal to the fermion density, we show analytically how a T-matrix
approach for the constituent bosons and fermions recovers the expected physical limit of a Fermi-Fermi mixture of
molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution
function, and the chemical potentials. By extending these equations to a trapped system, we determine how to
tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the indirect Pauli exclusion effect
on the boson momentum distribution function. For the homogeneous system, we present finally a diffusion Monte
Carlo simulation which confirms the occurrence of such a peculiar effect.
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I. INTRODUCTION

Bose-Fermi mixtures with a tunable boson-fermion attrac-
tion have been a subject of active theoretical [1–21] and
experimental [22–31] investigation over the past few years.
Previous theoretical studies of these systems have shown
that for a sufficiently strong attraction between fermions and
bosons, the boson condensation is completely suppressed
in mixtures where the boson density nB is smaller than or
equal to the fermion density nF. This complete suppression
of condensation occurs even at zero temperature, and is
associated with pairing of bosons with fermions into composite
fermions. Since the binding occurs in a medium, the paired
state formed by one boson and one fermion is influenced
by the presence of the remaining particles, and its composite
nature can manifest in appropriate thermodynamic or dynamic
quantities. Clearly, when the attraction is increased further,
the internal degrees of freedom of the composite fermions
are progressively frozen and the original Bose-Fermi mixture
becomes effectively a Fermi-Fermi mixture of molecules
and atomic (unpaired) fermions. This kind of evolution has
been studied already by us with a T-matrix diagrammatic
formalism [12,16,20] and with a fixed-node diffusion Monte
Carlo method [19].

The aim of the present paper is to show analytically how
a T-matrix diagrammatic approach, which is formulated in
terms of the constituent bosons and fermions, reconstructs the
appropriate description in terms of molecules and unpaired
fermions when the attraction is sufficiently large. In this
limit, we will derive simple expressions for the bosonic
and fermionic self-energies, momentum distribution functions,
and chemical potentials. Special attention will be devoted
to the momentum distribution functions. Indeed, one very
interesting feature found previously by us in a Bose-Fermi
mixture is the presence, under appropriate conditions, of a
region at low momenta with zero occupancy in the bosonic
momentum distribution function. The presence of this region
was interpreted as an indirect effect on the bosonic distribution
of the Pauli exclusion principle acting on the unpaired and
composite fermions. The analytic expression that we will
derive in this paper for the momentum distribution function

will make such an indirect Pauli exclusion effect on the bosonic
component particularly transparent.

The use of these simple equations will also allow us to
incorporate easily the effect of an external trapping potential.
We will then calculate the density profiles and the momentum
distribution functions for the trapped system. We will focus in
particular on determining the ideal experimental parameters
that maximize the indirect Pauli exclusion effect so as to make
it possible to observe in future experiments with Bose-Fermi
mixtures. In this respect, we will see that mixtures where the
bosons are light compared to the fermions are particularly
promising.

The paper is organized as follows. In Sec. II we derive
the asymptotic expressions for the pair propagator, self-
energies, momentum distributions functions, and chemical
potentials that are obtained in the molecular limit of the Bose-
Fermi attraction by starting from the T-matrix self-energies.
A comparison between the asymptotic expressions and the
corresponding T-matrix results is reported in Sec. II F. In
Sec. II G we present quantum Monte Carlo estimates for the
bosonic momentum distribution function and compare them
to the T-matrix results and asymptotic expressions. In Sec. III
we include the effect of a trapping potential in the asymptotic
expressions derived in Sec. II, and we discuss the visibility
of the indirect Pauli exclusion effect in Bose-Fermi mixtures
of current experimental relevance. Section IV presents our
concluding remarks.

II. DERIVATION OF THE ASYMPTOTIC EQUATIONS
IN THE MOLECULAR LIMIT

A. Preliminaries

We consider a mixture of single-component fermions and
bosons, with the boson-fermion interaction described by a
contact interaction, as it can be realized with a (broad)
Fano-Feshbach resonance tuning the boson-fermion scattering
length a of an ultracold Bose-Fermi mixture. We will be
interested in particular in the molecular limit of this system,
namely the limit where the binding energy ε0 of the two-
body boson-fermion bound state is the dominant energy
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scale. For the contact potential, ε0 = 1/(2mra
2), where mr =

mBmF/(mB + mF) is the reduced mass determined by the
boson and fermion masses mB and mF, and we have set � = 1.
The repulsive potential between bosons, which is necessary
for the stability of the system in the resonance region, can be
removed from consideration in the molecular limit of interest
in the present paper.

A natural length scale of our system, where fermions are the
majority species, is provided by the inverse of the Fermi wave
vector kF ≡ (6π2nF)1/3 (nF being the fermion number density).
One may use then the dimensionless coupling parameter g =
(kFa)−1 to describe the strength of the interaction. In terms of
this parameter, the molecular limit corresponds to the condition
g � 1, such that the radius of the bound state (which coincides
with the scattering length a, for a positive) is much smaller
than the average interparticle distance (∝ k−1

F ). [Note that in
some of our previous works [12,16,20], we used a different
definition of kF (in terms of the total density n = nF + nB, nB

being the boson number density), which coincides with the
present one only for nF = nB.]

The thermodynamic and spectral properties of a Bose-
Fermi mixture in the normal phase (i.e., above the con-
densation critical temperature) were studied in our previous
works [12,16,20] by using a T-matrix approximation for the
self-energies. The corresponding equations for the bosonic and
fermionic self-energies �B and �F at finite temperature read
(setting the Boltzmann constant kB = 1)

�B(k,ων) = −
∫

dP
(2π )3

T
∑
m

�(P,�m)

×G0
F(P − k,�m − ων), (1)

�F(k,ωn) =
∫

dP
(2π )3

T
∑

m

�(P,�m)

×G0
B(P − k,�m − ωn), (2)

where the pair propagator �(P,�m) is given by

�(P,�m) = −
{

mr

2πa
+

∫
dp

(2π )3

×
[

1 − f
(
ξF

P−p

) + b
(
ξB

p

)
ξF

P−p + ξB
p − i�m

− 2mr

p2

]}−1

. (3)

In the above expressions, ων = 2πνT and ωn = (2n +
1)πT , �m = (2m + 1)πT are bosonic and fermionic Matsub-
ara frequencies, respectively (ν,n,m being integer numbers),
while f (x) and b(x) are the Fermi and Bose distribution
functions at temperature T [f (x) = (ex/T + 1)−1, b(x) =
(ex/T − 1)−1]. In Eq. (3), ξ s

p = p2/2ms − μs is the free
dispersion relative to the chemical potential μs for the species
s = B,F, while the bare Green’s functions appearing in
Eqs. (1) and (2) are given by G0

B(k,ων)−1 = iων − ξB
k and

G0
F(k,ωn)−1 = iωn − ξF

k .
The self-energies (1) and (2) determine the dressed Green’s

functions Gs via Dyson’s equation G−1
s = G0 −1

s − �s . The
dressed Green’s functions Gs , in turn, allow one to calculate
the boson and fermion momentum distribution functions ns(k)

through the equations

nB(k) = −T
∑

ν

GB(k,ων) eiων0+
, (4)

nF(k) = T
∑

n

GF(k,ωn) eiωn0+
, (5)

from which the boson and fermion number densities are
obtained by integrating over momenta.

The full numerical solution of Eqs. (1)–(5) was tackled in
our previous works [12,16]. Here we are interested in deriving
analytic expressions in the molecular limit of the interaction g.
In this limit, the binding energy ε0 is the largest energy scale:
ε0 � T ,EF, with EF ≡ k2

F/(2mF). In addition, for the mixtures
with nB � nF of interest in the present paper, the bosonic
chemical potential μB approaches −ε0 in the molecular limit,
and is thus large and negative, while the fermion chemical
potential remains of the order of the Fermi energy, and is then
small compared to the binding energy. This hierarchy between
different energy scales will allow us to derive the asymptotic
expressions in the molecular limit.

B. The pair propagator

We focus first on the pair propagator �(P,�m). To perform
the frequency sum in Eqs. (1) and (2) for the self-energies,
we need to know the analytic properties of the extension
�(P,z) of the pair propagator to the whole complex (frequency)
plane. The analytic extension �(P,z) is defined by replacing
i�m → z on the right-hand side of Eq. (3). It is easy to verify
directly from Eq. (3) that �(P,z) has a branch cut on the
real axis for Re z � −2μ + P 2/(2M), where M ≡ mB + mF

[32]. In addition, for sufficiently strong attraction, the pair
propagator �(P,z) has a pole, which is associated with
molecular binding. To determine this pole, we first integrate
the terms in Eq. (3) that do not contain the Fermi or Bose
functions [this can be done for Imz �= 0 or for Imz = 0 and
Re z � −2μ + P 2/(2M)]. The pair propagator can then be
written as

�(P,z) = −
{

mr

2πa
− m

3/2
r√
2 π

√
P 2

2M
− 2μ − z

+ IB(P,z) − IF(P,z)

}−1

, (6)

where μ ≡ (μB + μF)/2, while IF(P,z) and IB(P,z) are de-
fined by

IB(P,z) ≡
∫

dp
(2π )3

b
(
ξB

p

)
ξF

P−p + ξB
p − z

, (7)

IF(P,z) ≡
∫

dp
(2π )3

f (ξF
P−p)

ξF
P−p + ξB

p − z
. (8)

The term IB(P,z) is suppressed exponentially by the Bose
function ∝ exp(−ε0/T ) and thus does not contribute to the pair
propagator in the molecular limit. The term IF(P,z) can instead
be expanded in powers of ε−1

0 , assuming P 2/(2M),|z| � ε0.
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The leading term is given by

I 0
F =

∫
dp

(2π )3

f
(
ξF

P

)
ε0

≡ n0
μF

ε0
, (9)

while inclusion of the next-to-leading term yields

IF(P,z) = I 0
F − δI 0

F + I 0
F

ε0

(
z + μCF − P 2

2mB

)
, (10)

where we have introduced the composite-fermion chemical
potential μCF = 2μ + ε0, while

δI 0
F = 1

2mrε
2
0

∫
dp

(2π )3
f (ξF

p )p2. (11)

At T = 0, n0
μF

= k3
μF

6π2 with kμF = √
2mFμF, while δI 0

F =
3mFμFI

0
F /(5mrε0).

The pole of � is then determined by the equation

z − P 2

2M
+ 2μ + ε0

[
1 − 2πa

mr

IF(P,z)

]2

= 0, (12)

which, by using the expansion (10) and neglecting terms of
order ε−2

0 at least, yields

z = P 2

2M∗ − μCF + �CF, (13)

where the molecule effective mass M∗ is given by

M∗ = M

(
1 + I 0

F
4πa

mr

mF

mB

)
(14)

= M

[
1 + 4

3π

mF

mB
(kμFa)3

]
(T = 0), (15)

while the self-energy correction �CF is

�CF = 4πa

mr

ε0
(
I 0

F − δI 0
F

)
(16)

= 4πa

mr

n0
μF

[
1 − 3

5
(kμFa)2

]
(T = 0). (17)

Equation (13) for the pole determines then the dressed
dispersion of the composite-fermion,

ξ̃CF
P = P 2

2M∗ − μCF + �CF, (18)

and the associated composite-fermion Fermi momentum PCF,
defined by the equation ξ̃CF

PCF
= 0. Note that the leading-order

term of the self-energy �CF takes into account the interaction
between the molecules and the unpaired fermions (with
approximate density n0

μF
) with the Born approximation value

for the molecule-fermion scattering length aDF:

aDF = (1 + mF/mB)2

1 + mF/2mB
a. (19)

The subleading correction to �CF as well as the correction
(15) to the bare mass of the molecules are instead due to the
composite nature of the molecules.

Finally, the residue w(P) at the pole of � is given by

w(P) = lim
z→ξ̃CF

P

(
z − ξ̃CF

P

)
�(z,P) (20)

= − 2π

am2
r

1 − 2πa
mr

IF
(
P,ξ̃CF

P

)
1 − 4πa

mr
I 0

F

(21)


 − 2π

am2
r

(
1 + 2πa

mr

I 0
F

)
≡ −w0, (22)

where in the last line we have neglected again terms of
order ε−2

0 . We see in Eq. (22) that in the molecular limit
the dependence on P of the residue is negligible even at
next-to-leading order.

C. Bosonic self-energy and momentum distribution function

The sum over the fermionic frequency �m in Eq. (1) for
the bosonic self-energy can be performed by transforming
it in a contour integration in the complex z plane, as is
usually done when summing over Matsubara frequencies (see,
e.g., Chap. 7 of Ref. [33]). One obtains three contributions
associated with the different singularities of � and G0

F in the
complex plane: the simple poles of � and G0

F and the integral
along the branch cut of �(P,z). This integral is, however,
suppressed exponentially by the Fermi function f (z) which
appears when transforming the discrete sum in a contour
integration. Indeed, we have seen above that the branch cut
is present for Re z � −2μ + P 2/(2M). Since 2μ 
 −ε0 in
the molecular limit, it follows immediately that the integral
along the cut is suppressed exponentially at finite temperature
(and is vanishing at T = 0).

The contributions from the poles of � and G0
F then yield

�B(k,ων) = w0

∫
dP

(2π )3

f
(
ξ̃CF

P

) − f
(
ξF

P−k

)
ξ̃CF

P − ξF
P−k − iων

. (23)

Note how in the molecular limit the boson self-energy (23)
acquires the form determined by the virtual recombination of
the boson with a fermion to form a molecule, with probability
amplitude

√
w0, followed by the decay of the virtual molecule

into its constituent fermions and bosons (with the same
probability amplitude).

We proceed now to the calculation of the boson momentum
distribution function, as determined by Eq. (4). We first
notice that in the molecular limit we are allowed to expand
perturbatively Dyson’s equation GB(k,ων) = [G0

B(k,ων)−1 −
�B(k,ων)]−1 since μB, and therefore the relevant range of
values of ων and k2/(2mB) inside the free boson propagator,
are of order ε0, while �B is of order ε

1/2
0 (because of the residue

w0, which is of order ε
1/2
0 ).

The expansion of Dyson’s equation to first order then yields

GB(k,ων) 
 G0
B(k,ων) + G0

B(k,ων)2�B(k,ων). (24)

The first term on the right-hand side of the above equation
yields again an exponentially small contribution when summed
over ων . By inserting the expression (23) for the self-energy
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in Eq. (24) and summing over ων , one gets

nB(k) = w0

∫
dP

(2π )3

b
(
ξ̃CF

P − ξF
P−k

)[
f

(
ξ̃CF

P

) − f
(
ξF

P−k

)]
(
ξB

k + ξF
P−k − ξ̃CF

P

)2

= w0

∫
dP

(2π )3

f
( − ξF

P−k

)
f

(
ξ̃CF

P

)
(
ξB

k + ξF
P−k − ξ̃CF

P

)2 (25)

= w0

∫
dP

(2π )3

�
(
ξF

P−k

)
�(PCF − P )(

ξB
k + ξF

P−k − ξ̃CF
P

)2 (T = 0). (26)

The expressions (25) and (26) show clearly the effect of
the Fermi statistics obeyed by the molecules and unpaired
fermions on the bosonic momentum distribution function. In
particular, at T = 0 the two � functions in Eq. (26) require
simultaneously P < PCF and |P − k| > kμF . As a result, when
kμF > PCF, nB(k) = 0 for k < kμF − PCF. We see therefore
that, for sufficiently low boson concentration, such that kμF >

PCF, the formation of the molecules depletes completely the
bosonic momentum distribution at low momenta. In particular,
by using the asymptotic expressions for the chemical potentials
derived below, one can see that, to leading order in the molec-
ular limit, kμF corresponds to the radius of the Fermi sphere
of the unpaired fermions, with density nF − nB, while PCF

corresponds to the radius of the Fermi sphere of the composite
fermions, with density nB. It then follows that the condition
nF − nB > nB must be fulfilled in order to have kμF > PCF, and
therefore the presence of the empty region at low momenta.
We note further that a partial suppression of the bosonic
momentum distribution at low momenta was found also for
weakly interacting Bose-Fermi mixtures in the perturbative
analysis of Ref. [34]. We see that in the opposite (molecular)
limit this effect is made extreme, yielding for nB < nF/2 to a
complete suppression of the occupancy at low momenta.

D. Fermionic self-energy and momentum distribution function

The calculation of the fermionic self-energy from Eq. (2)
proceeds along the same lines as for the bosonic self-energy,
with the only difference being that in this case there is just
the pole of � to considere, since the pole of G0

B is suppressed
exponentially. One then obtains

�F(k,ωn) = −w0

∫
dP

(2π )3

f
(
ξ̃CF

P

)
ξ̃CF

P − ξB
P−k − iωn

. (27)

The presence of μB in the denominator of the expression
(27) for the fermionic self-energy causes it to behave in the

molecular limit like w0ε
−1
0 ∼ ε

−1/2
0 . We are allowed then

to expand Dyson’s equation also for the fermionic Green’s
function. Before doing this, it is useful to introduce a procedure
which accelerates the convergence of the expansion in the
fermionic case. Indeed, in this case, there is a range of k

close to the Fermi step, and of frequencies close to zero such
that G0

F(k,ωn)−1 may be comparable to or even smaller than
�F(k,ωn), thus invalidating the expansion of Dyson’s equation
in this region. (In the bosonic case, for which the boson chem-
ical potential is negative and large, the self-energy is instead
always much smaller than G0

B
−1.) Before expanding, we thus

add and subtract in the denominator of Dyson’s equation the
quantity �0

F ≡ Re�R
F (kUF,ω = 0), where kUF corresponds to

the position of the Fermi step of GF as defined by the equation

k2/(2mF) − μF + Re�R
F (k,ω = 0) = 0,

and �R
F (k,ω) is the analytic continuation of the self-energy to

the real axis (obtained with the replacement iωn → ω + i0+).
In practice, in the molecular limit of interest here, kUF =
[6π2(nF − nB)]1/3, as we will see below. We then have

GF(k,ωn) = 1

G̃0
F(k,ωn)−1 − �̃F(k,ωn)

, (28)

where G̃0
F(k,ωn)−1 = iωn − ξ̃F

k with ξ̃F
k = k2/(2mF) − μF +

�0
F, while �̃F(k,ωn) = �F(k,ωn) − �0

F. The expansion of
Dyson’s equation (28) improves on that of the original
equation. Indeed, in the region where G̃F(k,ωn)−1 is small
or vanishing, �̃F(k,ωn) is also vanishing. In addition, it
is easy to check from Eq. (27) that �̃F(k,ωn) is of order
ε

−3/2
0 [while �F(k,ωn) is of order ε

−1/2
0 ], thus accelerating

the convergence of the expansion of Dyson’s equation. We thus
have

GF(k,ωn) 
 G̃0
F(k,ωn) + G̃0

F(k,ωn)2�̃F(k,ωn), (29)

from which one obtains

nF(k) = f
(
ξ̃F

k

) + T
∑

n

G̃0
F(k,ωn)2�̃F(k,ωn). (30)

= f
(
ξ̃F

k

) + T
∑

n

G̃0
F(k,ωn)2�F(k,ωn) − �F

0 f ′(ξ̃F
k

)
.

(31)

By using Eq. (27), one then gets

T
∑

n

G̃0
F(k,ωn)2�F(k,ωn) = −w0

∫
dP

(2π )3
f

(
ξ̃CF

P

) [
−f

(
ξ̃CF

P − ξB
P−k

) + f
(
ξ̃F

k

)
(
ξ̃CF

P − ξB
P−k − ξ̃F

k

)2 + f ′(ξ̃F
k

)
ξ̃CF

P − ξB
P−k − ξ̃F

k

]
. (32)

Note that, neglecting exponentially small terms in the molecular limit, f (ξ̃CF
P − ξB

P−k) = 1 − f (−ξ̃CF
P + ξB

P−k) 
 1. In addition,
at T = 0, where f ′(ξ̃F

k ) = −δ(ξ̃F
k ),

−w0

∫
dP

(2π )3

f
(
ξ̃CF

P

)
f ′(ξ̃F

k

)
ξ̃CF

P − ξB
P−k − ξ̃F

k

= −�F
0 δ

(
ξ̃F

k

)
, (33)

which cancels exactly with the last term on the right-hand side of Eq. (31). At finite T this cancellation holds only approximately,
the difference being a term of order T/ε

3/2
0 , which is negligible anyway in the molecular limit.
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We thus obtain for the fermionic momentum distribution
function in the molecular limit

nF(k) = f
(
ξ̃F

k

) + f
( − ξ̃F

k

) ∫
dP

(2π )3

w0f
(
ξ̃CF

P

)
(
ξ̃CF

P − ξB
P−k − ξ̃F

k

)2 ,

(34)

which at T = 0 becomes

nF(k) = �(kUF − k)

+�(k − kUF)
∫

dP
(2π )3

w0�(PCF − P )(
ξ̃CF

P − ξB
P−k − ξ̃F

k

)2 . (35)

One sees clearly from Eqs. (34) and (35) that the fermionic
momentum distribution function is made up of two com-
ponents: a Fermi distribution function of unpaired fermions
and a distribution of fermions which are paired with the
bosons in the molecules. The overall momentum distribution
function has then a step at a momentum determined by the
density of unpaired fermions. This is the expected behavior
in the molecular limit of the Bose-Fermi attraction. On the
other hand, for a weak Bose-Fermi attraction, one expects
Fermi liquid theory to be valid for the Fermi component,
predicting a momentum distribution function with a step at the
Fermi momentum corresponding to the total fermion density.
According to Luttinger’s theorem, the step remains pinned
at the same momentum as for the noninteracting system,
independently of the coupling value. This is precisely what
is found and discussed in Ref. [21].

Clearly, the only way to allow for such distinct behaviors
for weak and strong attraction is that a quantum-phase
transition breaking down the Fermi liquid theory occurs at
a certain critical coupling strength. Whether this transition
coincides with the transition from the condensed phase to the
normal one already studied in our previous works, or instead
somewhat anticipates it within the condensed phase, is not
a priori clear. To answer this question, one should extend
the present diagrammatic approach to the condensed phase
(and/or perform extensive QMC calculations in this phase).
Work along these lines is in progress.

Note also that at large k (i.e., k � kF), only the fermions
belonging to the molecules contribute to the momentum
distribution function. In this case,

nF(k) → nCFφ(k)2, (36)

where

nCF ≡
∫

dP
(2π )3

f
(
ξ̃CF

P

)
(37)

and, neglecting a subleading term in the expression for w0,

φ(k) =
√

2π

am2
r

1
k2

2mr
+ ε0

(38)

is the internal wave function of the molecules (as obtained
from the solution of the two-body problem). Note further that
at large k, nB(k) also converges to nCFφ(k)2, as can be seen
immediately from Eq. (25).

E. Chemical potentials

Equations (25) and (34) for the bosonic and fermionic
momentum distributions (or for their counterparts at zero
temperature) can be integrated over k to obtain the boson and
fermion density. For given densities, they can then be used to
obtain the values of the chemical potentials. In particular, it
can be shown that the integration over k of Eq. (25) yields

nB =
∫

dk
(2π )3

nB(k) (39)

= nCF + o
(
ε

−3/2
0

)
, (40)

where nCF depends on the chemical potentials and temperature
through Eq. (37).

Similarly, the integration over k of Eq. (34) yields

nF =
∫

dk
(2π )3

nF(k) (41)

= nUF + nCF + o
(
ε

−3/2
0

)
, (42)

where

nUF ≡
∫

dk
(2π )3

f
(
ξ̃F

k

)
. (43)

From Eq. (40), one then obtains

μCF = μ0
F(T ,M∗,nB) + �CF, (44)

where μ0
F(T ,M∗,nB) is the chemical potential for a free Fermi

gas of temperature T , mass M∗, and density nB, while Eq. (42)
yields

μF = μ0
F(T ,mF,nF − nB) + �0

F, (45)

where we have used Eq. (40) to replace nCF with nB. The
equation μB = μCF − μF − ε0 then yields

μB = μ0
F(T ,M∗,nB) − μ0

F(T ,mF,nF − nB)

+�CF − �0
F − ε0. (46)

A further simplification can be obtained by neglecting terms
of order a2. To this order, one can set M∗ = M , �0

F = 4πa
mr

nB,

and �CF = 4πa
mr

(nF − nB) in the previous equations for the
chemical potentials. At T = 0, one obtains in particular

μF = [6π2(nF − nB)]2/3

2mF
+ 4πa

mr

nB, (47)

μB = (6π2nB)2/3

2M
+ 4πa

mr

(nF − 2nB)

− [6π2(nF − nB)]2/3

2mF
− ε0, (48)

μCF = (6π2nB)2/3

2M
+ 4πa

mr

(nF − nB), (49)

and, at this level of accuracy,

kUF =
√

2mF
(
μF − �0

F

) = [6π2(nF − nB)]1/3. (50)

Equations (44)–(50) show how the T-matrix self-energy for
the constituent bosons and fermions recovers the expected
physical limit of a Fermi-Fermi mixture of dimers (molecules)
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FIG. 1. (Color online) Bosonic and fermionic momentum dis-
tribution function at T = 0 for a mixture with mB = mF, density
imbalance α = 0.70, and coupling strengths g = 2.35 (a) and g =
3.35 (b). The numerical results obtained by the T-matrix self-energy
(symbols) are compared with the analytic expressions in the molecular
limit for nB(k) (full curve) and nF(k) (dashed curve) derived in
the present paper. For the bosonic distribution, we present also the
numerical results for the T-matrix approximation expanded to first
order in Dyson’s equation (1st-TMA) besides those obtained without
expanding it (TMA). The wave vector k is in units of kF. Note that for
the fermionic momentum distribution, both the analytic expression
and the numerical T-matrix calculation yield nF(k) = 1 for k < kUF

(out of the vertical range chosen in the figure).

and unpaired fermions mutually repelling with a scatter-
ing length aDF = γ a. The T-matrix approximation yields
for the proportionality coefficient γ the value γ = (1 +
mF/mB)2/(1/2 + mF/mB), as can be seen by writing the term
4πa/mr as 2πaDF/mDF, where mDF = MmF/(mF + M) is the
reduced mass of a dimer and one fermion. This value for γ

is only approximate and corresponds to a Born approximation
for the dimer-fermion scattering.

F. Comparison with the T-matrix results

The asymptotic expressions for the momentum distribution
function derived in Secs. II C and II D can be compared with the
results obtained by the full numerical solutions of the T-matrix
set of equations. In Fig. 1 we present this comparison at T = 0
for a mixture with equal masses and a density imbalance
α ≡ (nF − nB)/(nF + nB) = 0.7 for which the indirect Pauli
exclusion effect can be seen on the bosonic momentum

distribution. The two panels correspond to two different
coupling values (g = 2.35,3.35). For the bosonic momentum
distribution, one notices that the asymptotic expression (26)
reproduces well the T-matrix results for k � 2kF as well as
the presence of the empty region for k < kμF − PCF, but it
deviates somewhat from the T-matrix results for intermediate
values of k. This difference is due to the fact that the
asymptotic expression (26) is obtained by expanding Dyson’s
equation to first order [cf. Eq. (24)], an approximation that
turns out to be valid for all k only for rather large values
of g. This is confirmed by the very good agreement with
the results obtained by expanding Dyson’s equation and
calculating numerically the self-energy (circles). Clearly, for
both comparisons the agreement improves when g increases,
albeit rather slowly for the nonexpanded T-matrix.

For the fermionic momentum distribution, instead, the
asymptotic equation (35) compares well already with the
nonexpanded T-matrix (for this reason, we do not present
Dyson-expanded results in this case). One sees that the
momentum distribution resulting from the asymptotic equation
(35) reproduces very well the full numerical T-matrix calcula-
tion already at the lower coupling considered in Fig. 1. Indeed,
in deriving Eq. (35) we have expanded the full Green’s function
GF in terms of �̃FG̃

0
F rather than �FG

0
F, a trick which, as noted

above, accelerates the convergence of Dyson’s expansion in the
fermionic case.

As a further check of the asymptotic expressions (24) and
(35), we present in Fig. 2 the same comparisons as for Fig. 1,
but now for two imbalances α = 0.25 and 0, for which the
empty region at low momenta in the bosonic momentum
distribution is absent, since PCF > kUF. We notice that even
though for these imbalances the asymptotic expression for the
bosonic momentum distribution also deviates more than the
fermionic one from the T-matrix results, the discrepancy gets
smaller when the density imbalance decreases. This is due to
the faster convergence of Dyson’s expansion for the bosonic
Green’s function at small imbalances. Indeed, one can see
from Eq. (23) for the bosonic self-energy that when PCF and
kμF are comparable, as happens at small imbalances, a partial
cancellation occurs between the contributions associated with
the two Fermi functions appearing in the numerator of Eq. (23),
thus making the self-energy small and Dyson’s expansion
rapidly convergent. As a matter of fact, for the density balanced
system at g = 4.0 [panel (c)] one can see that the difference
between the first-order expansion and the full T-matrix is
indeed very small.

It is interesting to note that in this symmetric case with
nB = nF (and mB = mF), both the asymptotic expressions (24)
and (35) and the T-matrix calculations yield slightly different
occupation numbers for the boson and fermion component. We
believe that this is due to the use, in our T-matrix approach, of
bare Green’s functions G0 multiplying the pair propagator
in the expressions (1) and (2) for the boson and fermion
self-energies. In particular, if we had used a dressed fermion
Green’s function GF in place of G0

F in the expression (1) for the
boson self-energy, we would have obtained a dressed fermion
dispersion ξ̃F

P−k in the place of a bare one in Eq. (24). Since
kUF = 0 for nB = nF, one would have that ξ̃F

P−k would always
be positive, and the first � function appearing in the numerator
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FIG. 2. (Color online) Bosonic and fermionic momentum dis-
tribution function at T = 0 for a mixture with mB = mF, density
imbalance α = 0.25, g = 2.25 (a); density imbalance α = 0.25,g =
3.70 (b); and density imbalance α = 0, g = 4.0 (c). The numerical
results obtained by the T-matrix self-energy (symbols) are compared
with the analytic expressions in the molecular limit for nB(k) (full
curve) and nF(k) (dashed curve) derived in the present paper. For the
bosonic distribution, we present also the numerical results for the
T-matrix approximation expanded to first order in Dyson’s equation
(1st-TMA) besides those obtained without expanding it (TMA). The
wave vector k is in units of kF.

of Eq. (24) would always be equal to 1, thus making Eqs. (24)
and (35) identical for nB = nF and mB = mF. The use of a
bare fermionic Green’s function in Eq. (24) subtracts instead
to the integral determining the bosonic distribution function
the contribution of wave vectors P such that |P − k| < kμF ,

with μF = �0
F = 4πa

mr
nB, as can be obtained from Eq. (45)

for nB = nF. This contribution vanishes in the extreme limit
g → ∞, but it is still finite at the value of g considered in
Fig. 2(c), and it accounts for the differences between the
fermionic and bosonic distributions. The use of a dressed
bosonic Green’s function in the convolution defining �F

would instead produce minor differences due to the large and
negative value of μB, which makes self-energy corrections less
important.

Note finally that in the previous comparisons, we used the
same chemical potentials μB and μF calculated numerically
within the T-matrix approximation as input parameters for the
asymptotic equations (26) and (35) [the remaining parameters
M∗, PCF, and kUF being fully determined by Eqs. (15), (18),
and (50)]. Alternatively, one could also use the molecular-limit
expressions (47) and (48) for μB and μF as input parameters
of the analytic calculations. The difference in the values is
small and, clearly, progressively vanishes as g increases. For
example, for g = 3.35 and α = 0.7, the discrepancy amounts
to 0.02%, 0.2%, and 0.8% for μB, μF, and μCF, respectively.

G. Comparison between T-matrix results and Monte Carlo
calculations for the bosonic momentum distribution function

In this subsection, we present a comparison between
the T-matrix results and variational (VMC) and fixed-node
diffusion (FN-DMC) Monte Carlo simulations obtained with
a guiding wave function, which is a suitable symmetrization of
the molecular wave function introduced in our previous work
[19]. The details of the simulations are the same as in [19],
except for the trial wave function.

Addressing the calculation of the momentum distribution
of the bosons in the molecular regime with a quantum
Monte Carlo approach is computationally a very demanding
problem, due to the need to take care of the pairing of
bosons with fermions into molecules, while simultaneously
symmetrizing with respect to the bosonic coordinates and
antisymmetrizing with respect to the fermionic coordinates.
We thus concentrate on a single choice of the parameters,
namely g = 3, α = 0.7, and equal masses mF = mB = m. We
perform our simulation with NF = 40 fermions and NB =
7 bosons. These particle numbers are chosen to reduce partially
finite-size effects, since the numbers of composite fermions
NCF = NB = 7 and unpaired fermions NUF = NF − NB = 33
correspond to closed shells. Simulations are carried out in
a cubic box of volume L3 = NF/nF with periodic boundary
conditions. We model the attractive interaction between bosons
and fermions with a square-well potential with radius RBF

such that nFR
3
BF = 10−7, and depth V 0

BF fixed by the re-

lation a = RBF[1 − tan(κBF)/κBF], where κBF =
√

mV 0
BFR

2
BF.

For consistency, we introduce the same repulsion between
the bosons that we used in our previous work [19] (even
though here it would not be necessary for the stability in
the molecular regime). The repulsion is then modeled by a
soft-sphere potential with radius RBB = 60RBF and height V 0

BB
fixed by the relation aBB = RBB[1 − tanh(κBB)/κBB], where

κBB =
√

mV 0
BBR2

BB; the Bose-Bose scattering length is set to

aBB = (6π2nF)−1/3.
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In both VMC and FN-DMC, the trial wave function �T

plays a crucial role. In VMC, the sampled observables are the
expectation value of quantum operators in the state defined
by �T . In FN-DMC, the amplitude of the wave function
is imaginary-time-evolved from �T , with the constraint on
the nodal surface to remain pinned to the points where
�T = 0 in order to circumvent the fermionic sign problem. We
estimate the momentum distribution in VMC with nVMC

B (k) =
〈�T |n̂k|�T 〉/〈�T |�T 〉, where n̂k is the number operator in
momentum space averaged over the momentum direction,
while FN-DMC provides the mixed estimator nDMC

B (k) =
〈�T |n̂k|�0〉/〈�T |�0〉, where �0 is the long-(imaginary)-time
evolution of �T . Both the VMC and the DMC estimates
are biased by �T ; a common way to reduce the bias is
to extrapolate them via the formula nEXT

B = (nDMC
B )2/nVMC

B ,
where the dependence on δ� = �0 − �T is second-order,
provided δ� is small.

Following [19], we write the guiding wave function
in the molecular regime as �T (R) = �S(R)�A(R). Here,
�S is a positive Jastrow function of the particle co-
ordinates R = (r1, . . . ,rNF ,r1′ , . . . ,rNB ) and is symmetric
under exchange of identical particles. We use �S(R) =∏

ij ′ fBF(rij ′)
∏

i ′j ′ fBB(ri ′j ′)
∏

ij fFF(rij ), where the unprimed
(primed) coordinates refer to fermions (bosons), and two-body
spherically symmetric correlation functions of the interparticle
distance are introduced. We set fBF = 1, while fBB is the
solution of the two-body Bose-Bose problem with f ′

BB(L/2) =
0; fFF is described below. Antisymmetrization in [19] was
provided with use of a generalized Slater determinant of the
following form:

�MS
A (R) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕK1 (1,1′) · · · ϕK1 (NF,1′)
...

. . .
...

ϕKNM
(1,NM) · · · ϕKNM

(NF,NM)

ψk1 (1) · · · ψk1 (NF)
...

. . .
...

ψkNUF
(1) · · · ψkNUF

(NF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (51)

where the molecular orbitals are defined as ϕKα
(i,i ′) =

fB(|ri − ri ′ |) exp [iKα(ri + ri ′)/2], which consist of the
relative-motion orbitals fB times the molecular center-of-mass
plane waves with |Kα| � PCF, and nCF = P 3

CF/6π2, while
for the unpaired fermions |kα| � kUF, with nUF = k3

UF/6π2.
The functions fB are chosen to be the bound solutions of
the two-body Bose-Fermi problem up to R̄, matched to a
functional of type f a

B (r) = C1 + C2(e−βr + e−β(L−r)), where
R̄ and β are variational parameters and f a′

B (L/2) = 0.
The molecular orbitals appearing in the Slater determinant

(51) are occupied by the bosons in a specific order, thus the
symmetrization of the bosonic coordinates is not fulfilled. This
is not a problem when calculating energies with the diffusion
Monte Carlo method, since the DMC pure estimator of the
energy does not depend on the trial wave function (except for
the fixed nodal surface), provided there is a finite overlap of the
trial wave function with the symmetric ground state. This is the
case for a finite number of particles using the nonsymmetric
wave function (51). A similar approach has been successfully
used in quantum Monte Carlo studies of the equation of state

of solid 4He [37,38] with the Nosanow-Jastrow wave function
[35,36], where the bosons are localized on specific lattice sites.

Bose symmetry of the trial wave function is, however,
crucial when calculating the momentum distribution, which
is obtained by a mixed estimator biased by the trial wave
function. A full symmetrization of the determinant (51) over
all permutations of the bosons is not feasible since the
number of terms to be summed scales as the factorial of
NB. For this reason, we resort to an approximate strong-
coupling wave function, where the symmetrization over the
bosonic coordinates is performed within the molecular orbitals
appearing in a single determinant:

�̃MS
A (R) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕK1 (1,RB) · · · ϕK1 (NF,RB)
...

. . .
...

ϕKNM
(1,RB) · · · ϕKNM

(NF,RB)

ψk1 (1) · · · ψk1 (NF)
...

. . .
...

ψkNR
(1) · · · ψkNR

(NF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (52)

where ϕKα
(i,RB) = ∑

i ′ ϕKα
(i,i ′).

By expanding the determinant (52), it is easy to show
that �̃MS

A (R) can be obtained from the original nonsymmetric
wave function by summing over all possible dispositions with
repetition of the bosonic coordinates in the nonsymmetric wave
function (51). The wave function �̃MS

A (R) then contains all per-
mutations of bosons, as required. It also contains, however, ad-
ditional spurious terms where the same boson appears in many
different molecular orbitals. For example, if we had NM =
NB = 3 molecular orbitals and NF = 5 fermions, we would
also obtain the term ϕK1 (1,1′)ϕK2 (3,1′)ϕK3 (5,1′)ψk1 (2)ψk2 (4),
where the boson 1′ is repeated.

These spurious terms tend to increase the bosonic conden-
sate, because the bosons that are not allotted to the molecular
orbitals are put in a plane-wave state with zero momentum
(since their spatial coordinates do not appear explicitly in
these terms). In the above example, the bosons i ′ = 2′,3′
would significantly contribute to the condensate fraction, since
changing their coordinates would not affect the value of that
specific term. These terms correspond also to the clustering
of many fermions close to a single boson at a distance of
order of aBF; they are then significant near resonance, where
the molecular orbitals are very loose, while they are strongly
suppressed in the molecular limit due to the Pauli principle,
which forbids the formation of fermion clusters, thereby
mitigating the unwanted effect on the bosonic condensate
fraction. We have tried to suppress further these spurious terms
by introducing a very short-range repulsive Jastrow factor
between fermions, with correlations fFF equal to the solution
of the two-body problem of a fictitious soft-sphere potential
with radius RFF = RBF and scattering length aFF = RFF/10.
The above values of the parameters RFF and aFF were chosen
so small so as to avoid any significant change of the kinetic
energy. It turns out that such feeble correlations do not change
significantly the momentum distribution of the bosons either.
However, they help to reduce the statistical error of the
simulations; we present, therefore, the results obtained by
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FIG. 3. (Color online) Comparison between T-matrix results,
VMC, and FN-DMC calculations for the bosonic momentum
distribution at g = 3 and α = 0.7. We also show the first-order
expanded T-matrix and the asymptotic results. The wave vector k is in
units of kF.

using these additional correlations, for which we have smaller
error bars.

In Fig. 3 we compare the VMC, DMC, and T-matrix
results for nB(k) at g = 3 and α = 0.7. Even at this value
of interaction, the VMC estimator gives a finite value of n0 =
nB(k = 0)/NB 
 0.06, while the FN-DMC is able to deplete
the condensate fraction down to a value compatible with
zero (namely, n0 
 0.001). One might think that obtaining a
strictly zero condensate with FN-DMC and the wave function
(52) is impossible in practice, because of the biased nature
of the mixed estimator of the momentum distribution. The
comparison between the VMC and DMC estimates hints,
however, at a complete depletion of the condensate. This is
probably due to the ability of the DMC to suppress completely
the energetically costly spurious terms.

In Fig. 3, we do not report the standard extrapolated
estimator next

B because the presence of a spurious condensate
fraction in the VMC calculation subtracts weight automatically
from the rest of the distribution, thus invalidating the extrap-
olation procedure for all values of k (including the values
of k where the VMC and FN-DMC are close to each other,
for which the extrapolation procedure could appear justified).
The DMC calculation confirms the suppression of the bosonic
momentum distribution at low k. In particular, the DMC results
appear to follow the T-matrix curve from k 
 1 down to the
value of k where the momentum distribution is predicted
to vanish according to the T-matrix calculation. The DMC
calculation agrees well with the T-matrix results also at high
momenta (k � 2). Some deviations occur in the intermediate
region 1 < k < 2, where the DMC seems closer to the first-
order expanded T-matrix curve rather than the full T-matrix
curve. We regard this better agreement with the expanded
T-matrix at intermediate k as fortuitous. On the one hand, an
extrapolation of the VMC and DMC results would increase the
values of the momentum distribution in this region, making it
closer to the T-matrix curve. On the other hand, the relative
motion molecular orbital fB strongly affects the nodal surface
and thus the momentum distribution. It can be argued that
refining its parametrization would modify the occupation of

intermediate momenta. Addressing these issues quantitatively
and reducing the error bars, especially for k < kF, would
require, however, an extremely large computational effort.

III. TRAPPED SYSTEM

The equations derived in the preceding section for the mo-
mentum distribution functions and for the chemical potentials
(and derived quantities, such as PCF and kUF) can be used
to describe also a Bose-Fermi mixture trapped in an external
potential whenever the particle number is sufficiently large to
make a local density approximation accurate. For the particle
numbers of order 105–107 typically used in experiments with
ultracold trapped gases, this condition is fully satisfied. The
effect of the trapping potential is then taken into account
by replacing the chemical potentials μB,F → μB,F − VB,F(r)
wherever they appear in the expressions derived in the previous
section for homogeneous gases. Here, VB,F(r) = 1

2ωB,Fr
2 is the

harmonic trapping potential acting on the boson and fermion
species, respectively (for definiteness, we assume the same trap
frequency ω for both species). The local quantities derived in
this way can be integrated over r to obtain the corresponding
trap-averaged quantities.

We will be interested in particular in the calculation of the
trap-averaged momentum-distribution function n

trap
B (k), with

the aim of determining the best conditions for the observation
of the “indirect Pauli exclusion effect” in trapped gases. The
local bosonic momentum distribution function in the molecular
limit is then given by

nB(k,r) = w0

∫
dP

(2π )3

�
(
ξF

P−k(r)
)
�(PCF(r) − P )[

ξB
k (r) + ξF

P−k(r) − ξ̃CF
P (r)

]2 , (53)

where ξ
B,F
k (r) = ξ

B,F
k + VB,F(r), while ξ̃CF

P (r) = P 2

2M
− μCF +

VCF(r) + �CF(r), with �CF(r) = 2πaDF
mDF

nUF(r), VCF(r) =
VB(r) + VF(r), and we have defined the density of unpaired
fermions nUF(r) = nF(r) − nB(r).

The trap-averaged quantity is then readily obtained by
integrating over r:

n
trap
B (k) =

∫
d3r nB(k,r). (54)

The chemical potentials μB,F (and thus μCF = μB + μF +
ε0) appearing in Eq. (53) need to be determined by the number
equation, obtained by integrating over r the corresponding
densities nB,F(r). Since in the molecular limit all bosons are
inside the molecules, it is physically more transparent to work
in terms of the molecular and unpaired fermion densities,
nCF(r) = nB(r) and nUF(r), respectively.

From Eqs. (47)–(49), one obtains

nCF(r) = 1

6π2

{
2M

[
μCF − VCF(r) − 2πaDF

mDF
nUF(r)

]}3/2

,

(55)

nUF(r) = 1

6π2

{
2mF

[
μF − VF(r) − 2πaDF

mDF
nCF(r)

]}3/2

,

(56)
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FIG. 4. (Color online) Density profiles of composite fermions
(CF) and unpaired fermions (UF) for a mixture with equal masses
and population imbalance α = 0.7 for coupling values g = 2.0 and
4.0. Density is in units of NFR

3
F, while r is in units of the Fermi radius

RF ≡ [2EF/(mFω
2)]1/2.

from which the chemical potentials μF and μCF are obtained
by fixing the total number of composite fermions NCF = NB

and unpaired fermions NUF = NF − NB.
Figure 4 reports as an example the density profiles for a

mixture with equal masses and population imbalance α ≡
(NF − NB)/(NF + NB) = 0.7 for two coupling values g = 2.0
and 4.0. Here, as for the homogeneous case, we have defined
g = (kFa)−1 and kF = (2mFEF)1/2, but with EF = (6NF)1/3ω

in the trapped case. Note that here we are using the exact
relation between aDF and a, as obtained from the solution of the
three-body problem [39]. The behavior of the density profiles
is consistent with analogous plots reported previously for
Fermi-Fermi mixtures (albeit with equal populations [40,41]).

Once the chemical potentials are obtained by inverting the
number equations using the above density profiles, the trap-
averaged momentum distribution function is calculated with
Eqs. (53) and (54). Figure 5 reports the trap-averaged bosonic
momentum distribution function nB(k) for three different pop-
ulation imbalances at g = 4 and equal masses. One observes
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that the depleted region at low momenta is visible also for the
trapped system, provided the overall population imbalance is
sufficiently high. To interpret these results, we note first that
the previous equations for a homogeneous mixture imply that
the depleted region at low momenta appears when the radius
of the Fermi sphere of the unpaired fermions exceeds that of
the composite fermions. In the molecular limit, this occurs
when nB < nF/2 or, equivalently, for a density imbalance
α > 1/3. It follows then that in order to have the empty region
at low momenta also in the trapped case, the local density
imbalance α(r) ≡ [nF(r) − nB(r)]/[nF(r) + nB(r)] should be
larger than 1/3 all over the trap. One sees in the inset of
Fig. 5 that this condition is indeed verified for the three cases
considered there. It is clear then that, in order to maximize
the indirect Pauli-exclusion effect on the bosonic momentum
distribution, one has to get large values of α(r) across the
trap. Quite generally, the local density imbalance depends
on three different physical parameters: the global population
imbalance α, the boson-fermion coupling g, and the mass ratio
mB/mF. One then has to tune these parameters appropriately.
Obviously, a large global population imbalance increases the
local one, as is also evident from Fig. 5.

Figure 6 shows instead that, for a given population imbal-
ance, increasing the coupling strength g has a modest effect
on α(r), while the momentum distribution function is reduced
at low k (and increased at large k, outside the range shown in
Fig. 6), reflecting the behavior of the internal molecular wave
function (38).

The dependence on the mass ratio mB/mF is studied
finally in Fig. 7. One can see that for a given coupling
strength and population imbalance (here g = 4 and α =
0.9), decreasing the mass ratio mB/mF increases the local
population imbalance, thus making more evident the presence
of the empty region at low momenta. Note that three out of
the five mass ratios considered in Fig. 7 correspond to the
mixtures 23Na-40K, 87Rb-40K, and 23Na-6Li, of relevance to
current experiments [27,29,31]. It should be stressed, in this
respect, that while the Feshbach resonances used for the first
two mixtures are broad [27,31], the one currently used for
the 23Na-6Li mixture is narrow [29]. Therefore, while for the
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first two mixtures the single-channel description adopted in the
present work is fully adequate [42], for the last one our analysis
has to be regarded as more qualitative. We notice finally that
out of these three mixtures, the 23Na-40K mixture looks to

be the most promising for the experimental observation of the
indirect Pauli exclusion effect, since it leads to a wider depleted
region in the bosonic momentum distribution.

IV. CONCLUDING REMARKS

In summary, we have shown how, within a T-matrix
diagrammatic approach, a Fermi-Fermi mixture emerges
effectively from a Bose-Fermi mixture for sufficiently strong
attraction. In this limit, we have derived simple expressions
for the bosonic and fermionic self-energies, momentum
distribution functions, and chemical potentials. In particular,
we have obtained an expression for the bosonic momentum
distribution function that shows analytically the presence of a
completely depleted region at low momenta when nB < nF/2.
The occurrence of this region is the fingerprint of what we
called the indirect Pauli exclusion effect. We have confirmed
the presence of such a region also with a dedicated QMC
simulation. This required us to address the nontrivial problem
of symmetrizing with respect to the bosonic coordinates a trial
wave function where the bosons are correlated with fermions
in a molecular bound state. To this end, we have introduced a
wave function where the symmetrization is performed within
each molecular orbital rather than globally, so as to keep the
computing time manageable.

Finally, we have discussed the possibility of observing the
indirect Pauli exclusion effect in a trapped system by extending
within a local-density approximation our calculations to such
an inhomogeneous situation. We have found that mixtures
where the bosons are lighter than the fermions enhance the
size and visibility of the depleted region: the mixture 23Na-
40K currently under study at MIT [27] appears particularly
interesting in this respect.
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[6] S. Röthel and A. Pelster, Eur. Phys. J. B 59, 343 (2007).
[7] X. Barillier-Pertuisel, S. Pittel, L. Pollet, and P. Schuck, Phys.

Rev. A 77, 012115 (2008).
[8] L. Pollet, C. Kollath, U. Schollwöck, and M. Troyer, Phys. Rev.
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