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Abstract
Superconductivity in iron-based magnesium diborides and other novel superconducting
materials has a strong multi-band and multi-gap character. Recent experiments support the
possibillity for a BCS–BEC crossover induced by strong-coupling and proximity of the chemical
potential to the edge of one of the bands. Here we study the simplest theoretical model which
accounts for the BCS–BEC crossover in a two-band superconductor, considering tunable
interactions and tunable energy separations between the bands. Mean-field results for condensate
fraction, correlation length, and superconducting gap are reported in typical crossover diagrams
to locate the boundaries of the BCS, crossover and BEC regimes. When the superconducting gap
is of the order of the local chemical potential, superconductivity is in the crossover regime of the
BCS–BEC crossover and the Fermi surface of the small band is smeared by the gap opening. In
this situation, small and large Cooper pairs coexist in the total condensate, which is the optimal
condition for high-Tc superconductivity. The ratio between the gap and the Fermi energy in a
given band results in the best detection parameter for experiments to locate the system in the
BCS–BEC crossover. Using available experimental data, our analysis shows that iron-based
superconductors have the partial condensate of the small Fermi surface in the crossover regime
of the BCS–BEC crossover, supporting the recent ARPES findings.
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1. Introduction

Multi-band and multi-gap superconductivity is emerging as a
complex quantum coherent phenomenon with physical
properties which are different from or cannot be found in
single band conventional superconductors. The increased
number of degrees of freedom of the multi-component
superconducting wave-function allows for novel effects.
Phase solitons [1] and massive or massless Leggett modes
[2, 3] are possible benchmarks for multi-gap super-
conductivity, being associated with phase differences between
the condensates in different electronic bands. Exotic vortex
states [4], non-trivial interactions between the vortices [5] and
hidden criticality [6] are also peculiar phenomena associated

with the multi-gap and multi-condensate nature of the
superconducting state. In these systems, the total super-
conducting condensate results from the coherent mixture of
partial condensates forming in each band, and the partial
condensates can have very different properties, leading to
interesting interference effects. Very recently, evidence of the
BCS–BEC crossover and strong coupling superconductivity
have been reported in the small Fermi surface pockets of
multi-band supeconductors. ARPES measurements in iron-
calchogenide superconductors have shown a superconducting
gap to Fermi energy ratio of order unity in the shallow upper
bands. The crossover regime has been detected by the col-
lapse of the small Fermi surface pocket and by the electronic
band dispersion becoming an inverted parabola in the
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coherent state [7]. This phenomenology observed in iron-
based superconductors is the same as the one predicted and
observed in ultracold fermions [8, 9].

Moreover, in underdoped superconducting cuprates the
bandwidth around the M points of the Brillouin zone is very
narrow, of the same order of the gap and pseudogap. Evi-
dences of broken Fermi surface and multi-band effects are
also recently reported in YBCO superconducting cuprates due
to charge ordering [10]. A sizable pseudogap, its continuous
evolution across Tc, together with a short correlation length
are evidence for strong pairing effects [11] and importance of
the BCS–BEC crossover in the underdoped cuprate super-
conductors [12, 13].

Another motivation to study the BCS–BEC crossover in
two-band superconductors comes from the superconducting
properties of the iron-based superconductor Ba0.6K0.4Fe2As2
(Tc = 37 K). Two different s-wave gaps open in the different
sheets of Fermi surface (FS): a large gap of Δ2 = 12 meV on
the small FS and a small gap Δ1 = 6 meV in the large FS [14].
The ratio Δ2 T1 c = 3.7 is very close to the BCS value of 3.5,
indicating BCS-like weakly coupled pairs in the large FS,
while Δ2 T2 c = 7.5 is very large and typical of BEC-like
strongly coupled pairs in the small FS. Hence, the total
superconducting condensate in BaKFeAs is a coherent mix-
ture of BCS-like and BEC-like partial condensates.

A two-gap superconductor with quite distinct gaps in the
different bands is also MgB2. In this material evidence for
resonant and crossover phenomena due to proximity to a band
edge have been reported [15].

Quantum confinement and shape resonance in stripe
systems, proposed as a mechanism for Tc amplifications [16–
18] with recent experimental confirmation in metallic stripes
[19], are clearly in coexistence with BCS–BEC crossover,
which can determine the best situation for high-Tc super-
conductivity. Indeed, multi-band BCS–BEC crossover can
determine the optimal condition to allow the screening of
superconduciting fluctuations. This screening effect is
expected to be active in a two-band superconductor, as shown
by means of a Ginzburg–Landau approach in [12].

Quite generally, different families of iron-based super-
conductors show new small Fermi surfaces at optimum
doping where Tc is the highest, appearing when the chemical
potential is near a band edge, close to the bottom (if electron-
like) or top (if hole-like) of the energy bands [20]. In this
situation, experiments show no evidence for nesting topology
and the mechanism for high-Tc can be associated with the
shape resonance scenario [21]. In figures 1(a) and (b) of [21]
the Fermi surfaces topology for different superconducting
iron-based materials have been schematized, showing that in
all cases large Fermi surfaces coexist with small Fermi sur-
face pockets, supporting the (at least) two-band model for
superconductivity as the minimal model to capture the band-
edge physics and corresponding novel multi-band BCS–BEC
crossover phenomena.

In 2D electron gases numerical evidence based on
Bogoliubov–de Gennes equations for the BCS–BEC cross-
over in surface superconductivity have been found. In such
systems the crossover phenomenon can be explored by

controlling the gate voltage of the surface superconductivity.
A gap to Fermi energy ratio larger than one signals the rea-
lization of the BEC regime in one of the bands of SrTiO3,
whereas the other bands are in the BCS regime, having a gap
to Fermi energy ratio smaller than one [22].

Finally, in ultracold cigar-shaped Fermi gases the quan-
tum confinement induces the formation of a series of single-
particle subbands. As theoretically predicted in [23], in the
superfluid state of these systems the total condensate is a
coherent mixture of subband condensates, each of which
undergoes a BCS–BEC crossover when the edge of the cor-
responding subband approaches the chemical potential.

The BCS–BEC crossover in two-band ultracold fermions
in the superfluid state has been studied at mean-field and
Ginzburg–Landau level in [24]. The main results of [24] have
been the understanding of the role of the interband (Joseph-
son-like) coupling in driving the transition between a 0-phase
and a π-phase of the two component order parameter, the
undamped collective excitations and the finite temperature
Ginzburg–Landau description of the two-band BCS–BEC
crossover.

In this work we will focus on the BCS–BEC crossover
which can be induced in one of the partial condensates when
the chemical potential is close to the band edge of a two-band
system. In our model system, one partial condensate is in the
weak-coupling regime with extedend Cooper pairs forming in
the large Fermi surface, while the second partial condensate
has tunable properties, and the pairing in the small Fermi
surface can be varied from the weak- to the strong-coupling
regime, allowing for the BCS–BEC crossover to be induced
in the band associated with the small Fermi surface. We will
explore at mean-field level and at zero temperature, in a three
dimensional continuum, the phase space of the interaction
parameters in order to detect the boundaries between the
different BCS, crossover and BEC regimes, locating in the
boundary diagrams the available experimental data of multi-
gap superconductors.

The physical description of the zero temperature BCS–
BEC crossover [25, 26] is based on two physical quantities:
the condensate fraction [27] and the average size of the
Cooper pairs [28]. The condensate fraction quantifies the
fraction of fermions participating in the condensation into the
superconducting state. In the BCS regime the condensate
fraction is exponentially small and a very small density of
fermions forms the condensate wave-function; in the BEC
regime the condensate fraction approaches unity, i.e. the
attraction is so strong that all the fermions form local mole-
cular pairs with bosonic character. In terms of the average pair
size ξpair the physics is well known, as the parameter ξkF pair

was the first parameter used in the pioneering work on the
BCS–BEC crossover [28]. The BCS regime is characterized
by ξ ≫k 1F pair , while in the BEC regime point-like pairs lead
to ξ <k 1F pair . This characterization of the BCS–BEC cross-
over ends up being very clear from a theoretical and phe-
nomenological point of view, but unfortunately both the
condensate fraction and the average size of the pairs are not
easy to measure. Hence, in this work we provide a way to link
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the BCS–BEC crossover given in terms of the condensate
fraction α and ξkF pair to the ratio between the super-
conducting pairing gap at T = 0 to the Fermi energy of the
non-interacting system. This ratio is measurable in experi-
ments by ARPES, tunnelling (STM) or specific heat mea-
surements and can then provide a very useful parameter to
detect the BCS–BEC crossover in complex multi-gap super-
conductors, as in the case of iron-pnictides, MgB2 or cuprates.

The paper is organized as follows. In section 2 we will
discuss the model system, the mean-field equations that
describe it and the relevant physical quantities used to detect
the boundaries of the BCS–BEC crossover. In section 3 we
will present our results for the one-band system as a reference,
and then we will discuss the results for the two-band system
in connection with available experimental data. Section 4
presents our concluding remarks.

2. Model and methods

A two-band system of interacting fermions in three dimen-
sions and at zero temperature is considered. The two elec-
tronic bands have a parabolic dispersion ξ k( )i given by:

ξ μ ϵ= − +k
k
m

( )
2

, (1)i i

2

where k is the wave-vector, m the effective mass which is
taken equal in the two-bands, μ the chemical potential and ϵi
the energy of the bottom of the bands. The index i = 1, 2
labels the bands: i = 1 denotes the lower band and i = 2
denotes the upper band. We set ϵ1 = 0, while ϵ ⩾2 0 is tunable.
The Fermi energies EFi are defined in the non-interacting case
as μ ϵ= −EF ii . We also set ℏ = 1 throughout this article.

In figure 1 the band dispersions and the Fermi surfaces
are reported. The effective pairing interaction between fer-
mions is approximated by a separable potential ′k kV ( , )ij with
an energy cutoff ω0 and it is given by:

Θ ω ξ Θ ω ξ′ = − − − ′( )( )k k k kV V( , ) ( ) ( ) , (2)ij ij i j
0

0 0

where Vij
0 is the (positive) strength of the potential and i,j label

the bands. In the following we will set =V V V.ij ji
0 0

11
0 and V22

0

are the strength of the intraband pairing interactions (Cooper
pairs are created and destroyed in the same band). =V V12

0
21
0

are the strength of the Josephson-like interband pairing
interactions (Cooper pairs are created in one band and
destroyed in the other band, and vice versa). Here we consider
the same energy cutoff ω0 of the interaction for intraband and
interband pairing terms. Note that in this work we neglect
interband pairing terms corresponding to Cooper pairs form-
ing from fermions associated to different bands. Moreover,
when the chemical potential relative to the bottom of the
bands becomes negative, the replacement μ ϵ− → 0i will be
done in both of the step functions of equation (2) to obtain the
correct BEC limit given by the corresponding two-body
problem in the vacuum. Indeed, when μ ϵ− i is negative the
Fermi surface of the band (i) is destroyed and the interaction
becomes contact-like, with a cutoff in k ( ω=k m20 0 ) which
ensures the convergence of the mean-field equations.

The superconducting ground state of our system is stu-
died in this article at a mean-field level of approximation. We
use mean-field equations at zero temperature based on the
two-band extention of the mean-field BCS theory [29]. The
BCS equations for the two superconducting gaps are coupled
with the equation for the total density of the system, as the
renormalization of the chemical potential is a key feature in
the BCS–BEC crossover [13, 28].

The equations for the gaps Δ k( )1 and Δ k( )2 read:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑Δ
Ω

Δ

ξ Δ

Δ

ξ Δ
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′ + ′

′
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k k
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k

2 21
1

1
2

1
2

22
2

2
2

2
2

being Ω the volume occupied by the system, and with the
gaps having the same cutoff of the separable interaction:

Δ Δ Θ ω ξ= −( )k k( ) ( ) . (5)i i i0

Note that the step function of equation (5) also undergoes the
same replacement discussed above for the interaction poten-
tial in the case μ ϵ− < 0i .

In this work, the total density of the two-band system is
fixed and it is given by the sum of the densities in the two-
bands, ntot = n1 + n2. The fermionic density ni in the band (i)
at T = 0 is defined as:

∑
Ω

= kn v
2

( ) , (6)
k

i i
2

where kv ( )i is the BCS weight of the occupied states. The

Figure 1. Band dispersions (panel (a)) and kz = 0 projection of the
Fermi surfaces (panel (b)). The energy and the wave-vectors are
measured in units of EF1 and kF1, respectively. ϵ2 is the band offset of

the upper band and it is measured in units of EF1.
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BCS weights kv ( )i and ku ( )i are:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

ξ

ξ Δ
= −

+
k

k

k k
v ( )

1

2
1

( )

( ) ( )
, (7)i

i

i i

2

2 2

= −k ku v( ) 1 ( ) . (8)i i
2 2

The boundaries between the different BCS, crossover and
BEC regimes of the two-band BCS–BEC crossover are here
determined by analyzing three fundamental physical quan-
tities of the superconducting ground state wave function: the
condensate fraction, the correlation length of the Cooper pairs
and the superconducting gap, using physical insights from the
BCS–BEC crossover in ultracold fermionic atoms close to a
Fano–Feshbach resonance [27, 28]. The condensate fraction
αi, which is the ratio between the number of fermions of the
band (i) forming the Cooper pairs of the condensate and the
total number of fermionic particles in the same band, strictly
related to the off-diagonal long-range order, is defined as:

α =
∑

∑
( )k k

k

u v

v

( ) ( )

( )
, (9)k

k

i
i i

i

2

2

while the pair correlation length ξ ipair, , which represents the
average size of the Cooper pairs, is given by:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ξ =

∑

∑

 ( )
( )

k k

k k

u v

u v

( ) ( )

( ) ( )
. (10)k k

k

i
i i

i i

pair,

2

2

1
2

In equation (10) the step function of equation (5) is replaced
by a smooth function in order to obtain finite partial
derivatives.

We solve numerically the three by three system of
equations (3), (4) and (6). We performe numerical calcula-
tions using a Fortran95 program in which we use the Gauss–
Legendre method to evaluate the integrals over the energy
variable ϵ = k m(2 )2 and the symmetric rank-one method to
solve systems of equations. Once the values of the gaps and
of the chemical potential are obtained, we calculate numeri-
cally the condensate fraction and the pair correlation length
given in equations (9) and (10) respectively.

For the one-band system we use as units kF for wave-
vectors, where π=k n(6 )F

2 1 3 and n is the density of a free

Fermi gas. We use then the Fermi energy scale =EF
k

m2
F
2

to
normalize the energies. The dimensionless coupling λ is
defined as λ = N E V( )F

0 where N E( )F is the density of
states at the Fermi level (note that in the one-band case we
dropped the indices used in section 2 to label the bands).

For the two-band system, as we are mostly interested in
the properties of the upper band (label 2), we use the units of
band 2 and energies are measured in units of

= − ϵ
E E (1 )F F EF

2 1

2

1
, where EF1 is the Fermi energy of the

lower band. The dimensionless coupling in the upper band is

λ λ= − ϵ1
E22

eff
22

F

2

1
, with λ = N E V( )F22 22

0
1 . The interband

(Josephson-like) coupling parameters are defined as
λ = N E V( )F12 12

0
1 and λ = N E V( )F21 21

0
1 . With this definition,

we obtain λ λ=12 21, being =V V12
0

21
0 . The total density of

fermions in our system is then
⎡
⎣⎢

⎤
⎦⎥= + − ϵ

n n 1 (1 )
Etot 1

3 2
F

2

1
.

3. Results

The first step in our analysis is to study the properties of the
superconducting ground state with only one band and the
separable interaction considered in this work. It turns out that
a full characterization of the BCS–BEC crossover for this
fermionic system is lacking in the literature even in the one-
band case. As described in the previous section, the line
boundaries between the BCS, crossover and BEC regimes are
determined through the calculation of the condensate fraction
given in equation (9), of the correlation length of the Cooper
pairs given in equation (10) and of the superconducting gap
obtained by reducing equations (3)–(6) to the standard one-
band case. The aim is to verify that the crossover boundary
lines obtained with condensate fraction, correlation length,
and superconducting gap are compatible with each other.

In figure 2 the condensate fraction α is reported as a
function of the coupling λ for different energy cutoffs of the
pairing interaction. This quantity will guide us to the
exploration of the crossover boundary diagrams and to
establish the boundaries for the gap and the pair correlation
length. Thin horizontal lines (grey color online) represent our
choice of the boundaries between the different pairing
regimes: for α < 0.2 the superconducting state is in the weak-
coupling BCS regime; for α< <0.2 0.8 the system is in the
crossover regime; for α > 0.8 the system is in the strong-
coupling BEC regime (α = 1 corresponds to all fermions
paired in a bosonic state). The line α = 0.5 indicates the
centre of the BCS–BEC crossover, correspoding to having
50% of fermions in the condensed state. Note that for
λ < 0.25 the condensate fraction, being directly proportional
to the gap, is exponentially suppresed, and the number of

Figure 2. Condensate fraction α in the one-band case as a function of
coupling λ for different energy cutoffs of the interaction ω0

normalized to the Fermi energy. Thin solid lines (grey color online)
correspond to α = 0.2, 0.5, 0.8 from bottom to top.
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fermions entering in the condensate becomes extremely small.
The proportionality between the gap and the condensate
fraction in the BCS regime has also been obtained for ultra-
cold fermions at mean-field level [27]. Note in figure 2 that
when the pairing is increased the condensate fraction saturates
to values that increase for increasing energy cutoff: as a
consequence, while the crossover regime can be easily
approached for different cutoff values, the BEC regime
requires strong pairing and a large energy cutoff to localize
the Cooper pairs in space (large wave vectors need to be
coupled by the pairing interaction).

In figure 3 the superconducting gap in the one-band case
is reported as a function of the coupling λ for different values
of the energy cutoff ω0. The gap is exponentially suppressed
for small values of the interaction λ < 0.25 (the well known
BCS weak-coupling limit Δ ω= λ−2 e0

1 has been recovered
by our numerical calculations) and it increases for larger value
of the interaction when the BEC limit is approached. The gap

gets larger and larger when the energy cutoff ω0 is increased.
In the plot for the coupling dependence of the gap for dif-
ferent energy cutoffs, it is not possible to find a single value of
the gap which is in correspondence to the boundary values of
the condensate fraction as shown later in this section.

In figure 4 the correlation length of the Cooper pairs is
presented as a function of the coupling λ for different values
of the energy cutoff ω0. Thin grey lines represent the
boundaries that we have found to match the crossover
boundary diagram for ξkF pair with that of α (see panel (c) of
figure 5). We obtain a satisfactory matching using ξkF pair

= 4.0 for the BCS boundary line, ξkF pair = 1.4 for the center
of the crossover line and ξkF pair = 0.91 for the BEC line. The
calculation of ξkF pair requires the introduction of a smearing
procedure of the step function of equation (5) in order to
perform the numerical derivatives of equation (10). In figure 4
the line corresponding to ω EF0 = 5 has been obtained with a
different smearing parameter (ω Es F = 4.0) with respect to the
other four curves (ω Es F = 0.1), and it has been presented to
show how the BEC limit is approached.

In the weak-coupling limit (λ ≪ 1) the correlation length
diverges, while it decreases for larger values of the pairing
interaction. We have verified that in the weak-coupling limit
(ω ≲E 0.2F0 , λ ≲ 0.2) our results for the pair correlation
length are in good agreement with that of [28]. Indeed we
have found that our one-band system is in the BCS regime of
pairing when the dimensionless parameter ξ >kF pair 4.0
which is close to the value π2 found in [28], corresponding to
strongly overlapping Cooper pairs. More preciseley, the
boundary value for the BCS regime, ξ π=k 2F pair of [28], is
obtained in our model system for ω >E 1F0 and for a value
of the condensate fraction α = 0.13. Therefore, according to
our choice of the boundary values, ξ π=k 2F pair describes a
regime of pairing well inside the BCS regime. Moreover, as
expected from the behaviour of the gap and of the condensate
fraction, the pair correlation length also easily approaches the
crossover regime, while it approaches the BEC regime only
for strong coupling and large energy cutoffs.

Note that in the intermediate to strong-coupling regime
λ >( 0.5) the pair correlation length reported in figure 4 is
characterized by an almost flat dependence on the coupling,
with a non-monotonic behavior and a presence of a shallow
minimum. This is indeed a counter-intuitive result because a
monotonic decrease of ξpair toward the bound state radius
approaching the BEC limit is expected. This complicated
behavior is associated with the momentum cutoff of the
pairing interaction and with the smoothing of the step func-
tions in the numerical calculation of the correlation length.
Indeed, the position of the minimum depends on the details of
the interaction potential and of the smoothing function, as
clear from figure 4. In the BEC limit, because of a finite cutoff
in momentum ω=k k EF F0 0 in our model system, the
correlation length approaches a finite value and the molecular
pairs have a finite minimum size, as obtained from our
numerical calculations. In the intermediate to strong-coupling
regime the flat behavior of ξpair is associated with the flat
coupling dependence of the ratio Δ μ∣ ∣, which controls the

Figure 3. Superconducting gap Δ in the one-band case as a function
of the coupling λ for different energy cutoffs of the interaction ω0

normalized to the Fermi energy.

Figure 4. Correlation length (average size of the Cooper pairs)
ξkF pair in the one-band case as a function of the coupling λ for

different energy cutoff of the interaction ω0 normalized to the Fermi
energy. Thin solid lines (grey color online) correspond to ξkF pair

= 0.91, 1.4, 4.0 from bottom to top.
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coupling dependence of the correlation length approaching
the BEC regime, which is ξ Δ μ≈ ∣ ∣k ( )F pair

2 3, as shown in
equation (37) of [30]. Hence, approaching the BEC limit,
when the pairing interaction is different from a pure contact

potential, is a complicated process and the correlation length
is a quite involved physical quantity to follow in this part of
the BCS–BEC crossover. However, this behaviour of the
correlation length does not affect the boundary diagrams that
will be presented in the next section, because to obtain such
diagrams we considered only the region where the correlation
length is a decreasing function of the coupling, and is weakly
dependent on the details of the interaction potential and of the
smoothing function.

3.1. Crossover boundary diagrams

We present here the crossover boundary diagrams for the
one-band system and for the two-band system. We consider
the line boundary between the BCS and the crossover
regime, the line corresponding to the center of the crossover,
and the boundary line between the crossover and the BEC
regime. In both one- and two-band systems, the constant
values of the condensate fraction determine the crossover
boundary lines. Along these boundaries we will extract the
corresponding values of the pair correlation length and of
the superconducting gap, which will be used as our detection
parameters to locate the novel superconducting materials,
i.e. the iron-pnictides, in the BCS–BEC crossover phase
boundary diagrams. In the case of the two-band system, our
analysis of the BCS–BEC crossover will be focused on the
upper band for chemical potentials close to the bottom of the
upper band.

3.1.1. One-band system. Panels (a), (b) and (c) of figure 5
present the crossover boundary diagrams for the condensate
fraction (panel (a)), gap (panel (b)) and pair correlation length
(panel (c)) for the one-band system.

In panel (a) of figure 5 the crossover boundary diagram
for the condensate fraction is presented together with the line
that marks the change of sign of the chemical potential. In
order to approach the BEC regime for the condensate fraction,
it is necessary that the chemical potential becomes negative.
This can be seen by comparing the boundary crossover lines
for μ = 0 and α = 0.8. This is already an important result.
From the physics of the BCS–BEC crossover in ultracold
fermions, we know that μ = 0 corresponds to entering the
BEC regime [9]. Therefore we confirm that when more than
80% of fermions are paired and condensed, the system has
entered the BEC regime.

Concerning the chemical potential we have found that in
the BEC limit (λ ≫ 1 and ω ≫E 1F0 ) the chemical
potential μ approaches half of the binding energy of two
particles which interact in the vacuum through the potential
defined in equation (2). This result confirms the correct
treatment of the BEC limit that we have discussed in the
previous section. The equation that defines the (negative)
binding energy ϵ0 of the two-body problem in the vacuum
for a three dimensional system and the attractive interaction

Figure 5. Crossover boundary diagrams for the BCS–BEC crossover
in the one-band case in the coupling versus energy cutoff plane.
Different lines indicate the crossover boundaries between the BCS,
crossover and BEC regimes. The boundaries are obtained using the
condensate fraction, the gap, and the correlation length. Panel (a):
crossover boundary diagram for condensate fraction α and curve for
μ = 0; panel (b): crossover boundary diagram for condensate
fraction (thin solid lines, grey color online) and gap Δ; panel (c):
crossover boundary diagram for condensate fraction (same as in
panel (b)) and pair correlation length ξpair.
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of equation (2) is:

∫λ
ϵ ϵ

ϵ ϵ
=

+

ω1
d

2
, (11)

0 0

0

that has the implicit solution for ϵ0:

λ
ω

ϵ ω
ϵ

= −1

2
arctan

2
, (12)0

0 0

0

where energy variables of equations (11) and (12) have been
normalized to an energy scale EF. In our many body system,
we have verified that μ ϵ→ −| | 20 for sufficiently large
values of the coupling λ and of the energy cutoff ω0. For
instance this BEC limit is obtained with our set of equations
for ω ∼E 6F0 and λ ∼ 3. We have also found that there
exists a critical value of the coupling λ ω= 1c 0 (in units
of a generic energy scale EF) below which no two-body
bound state is allowed: the existence of a coupling threshold
for two-body bound state is a generic feature in 3D systems.

In panel (b) of figure 5 the guiding crossover boundary
diagram for the condensate fraction (thin grey lines) is
presented together with the gap crossover boundary diagram.
We choose the boundaries for the gap in order to match the
condensate fraction crossover boundary lines at λ = 2 and at
ω EF0 = 5. We then choose Δ EF = 0.156 and Δ EF = 1.3 as
lower bounds at ω EF0 = 5 for the BCS and the BEC lines
respectively, and Δ EF = 0.55 and 2.9 as upper bounds for the
gap at λ = 2. Note that Δ EF = 0.156 is the value of the gap
corresponding to ξ =kF pair 4.8.

In panel (c) of figure 5 the guiding crossover boundary
diagram for the condensate fraction is presented together with
the correlation length crossover boundary diagram. The
boundaries for the BCS, center of the crossover and BEC

regimes are ξkF pair = 4.0, 1.4 and 0.91 respectively. One can
see that the BCS and center of the crossover boundary lines
for the pair correlation length and for the condensate fraction
are in good agreement for all the values of energy cutoff. The
BEC line has the same qualitative behaviour of that for
α = 0.8 and it is in very good agreement with the μ = 0 curve
of panel (a).

To obtain the boundary lines for the correlation length we
use a different smearing parameter per each boundary line: we
choose ω Es F = 0.1, 0.8 and 4 for the BCS, center of the
crossover and BEC lines respectively.

To conclude the analysis of the BCS–BEC crossover in
the one-band system we show in figure 6 the crossover
boundary diagram that presents the values of the gap to which
correspond condensate fractions α = 0.2, 0.5 and 0.8, and
μ = 0. The remarkable result that emerges from figure 6 is
that values of the gap between Δ EF = 0.55 and 1.3 permit us
to locate the system in the crossover regime of the BCS–BEC
crossover for all the values of the energy cutoff ω EF0 = (0,5)
and of the coupling λ = (0,2) considered in this work. In
figure 6 we report for comparison the available experimental
values of the ratio Δ EF reported in [31] for ultracold
fermionic atoms. The Δ EF data points are reported in
figure 6 with one arrow to indicate that the results of the
contact potential can be obtained by using a separable
attractive interaction only in the limit of large ω EF0 and
small coupling λ.

Using the crossover boundary diagram of figure 6 one
can identify immediately the values of the gap that permit us
to locate the superconducting system in the BCS, crossover or
BEC regimes. Independently from the details of the pairing
interaction, our results show that when Δ< <E0.55 1.3F

the one-band system is in the center of the BCS–BEC
crossover and Δ EF can be considered as a robust detection
parameter to characterize the regime of pairing.

3.1.2. Two-band system. Figure 7 presents the crossover
boundary diagrams for the partial condensate fraction in the
upper band α2 and for the change of sign of the chemical
potential with respect to the bottom energy of the upper band
μ ϵ− 2 = 0. We consider the coupling λ22

eff vs energy cutoff
ω EF0 2 plane for parameters λ11 = 0.15, ϵ2 = 0.5, for values of
λ λ=12 21 = 0.05, 0.15, 0.25 (panels (a), (b) and (c)
respectively). With the present choice of parameters the
Cooper pairing in band 1 is in the weak coupling regime
( Δ< <E0.01 0.5F1 1 ), the interband pairing is progressively
increased and the chemical potential is close to the upper band
bottom, being μ ϵ− 2 on the same energy scale of the gap in
band 2 and of the energy cutoff of the interaction. In figure 7
the guiding lines for α = 0.2, 0.5 and μ = 0 (thin grey lines) of
the one-band system (from panel (a) of figure 5) are presented
together with the crossover boundary diagrams for the two-
band system for α2 = 0.2, 0.5 and μ ϵ− 2 = 0. In panel (a) of
figure 7 corresponding to λ λ= = 0.0512 21 , the BCS
boundary line is almost not affected by the presence of the
lower band whereas the center of the crossover boundary line
is slightly retarded for ω ≲EF0 2 1.5. In panel (b) and (c) of

Figure 6. Crossover boundary diagram in the one-band case for the
gap Δ EF as a function of the cutoff frequency ω EF0 , which
correspond to the condensate fractions α = 0.2, 0.5 and 0.8 and
μ = 0. Thin horizontal lines (grey color online) represent the values
Δ EF = 0.55 and 1.3 between which we have found that the system
is in the crossover regime of pairing for every value of the coupling λ
and of the cutoff energy ω0 considered in this work. The points
located at Δ EF = 0.44 and 0.70 correspond to two values of the
pairing gap for ultracold fermions in the crossover regime reported
in [31].
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figure 7 the BCS boundary line is not affected with respect to
that of the one-band system for ω ≲EF0 2 0.5 and is
progressively anticipated with increasing λ12 for ω ≳EF0 2

0.5. The center of the crossover boundary line is slightly
retarded and not affected by variation of λ12 for ω ≲EF0 2 1.1

and is progressively anticipated for increasing λ12 for
ω ≳E 1.1F0 2 . For all chosen values of λ12 the value
α2 = 0.8 needed to enter the BEC regime is not reached in
the two-band system. Moreover in the two-band system the
curve for the change of sign of the chemical potential with
respect to the bottom of the upper band (μ ϵ− 2) is
significantly retarded with respect to that of the one-band
system. This is because the presence of the lower band
(having a gap smaller than the gap in the upper band) locks
the chemical potential and does not permit it to decrease as
fast as in the one-band system. As a consequence, the
boundary line μ ϵ= 2 is reached only for very large values of
ω EF0 2 and λ22

eff. The line μ ϵ− 2 = 0 is progressively
anticipated for increasing values of λ12.

Note that the line for α2 = 0.2 in panel (c) vanishes at
ω ∼EF0 2 4 meaning that the system is already out of the BCS
regime; it also features zero intraband coupling in band 2
because of the sizeable interband coupling λ12.

In figure 8 the boundary crossover diagrams reporting the
values of the gap Δ EF2 2 that give α2 = 0.2, 0.5 and μ ϵ− 2

= 0 (inset) are presented for the two-band system using the
same parameters in panel (b) of figure 7, together with the
lines for the one-band system presented in figure 6 (we
present in figure 8 the lines for α = 0.2, 0.5 and μ = 0 for the
one-band system). This is the central result of our work for
the two-band system.

One can see in figure 8 that the BCS gap line of the two-
band system corresponding to a partial condensate fraction in
band 2 of α2 = 0.2 perfectly overlaps the line of the one-band
system, whereas the center of the crossover line is slightly
shifted up. The BEC line α2 = 0.8, as we said above, is not
reachable in the two-band system, whereas the line for μ ϵ= 2

Figure 7. Crossover boundary diagrams for the BCS–BEC crossover
in the two-band case in the coupling vs energy cutoff plane for
ϵ =E 0.5F2 1 , λ = 0.1511 . The boundary lines for α2 = 0.2, 0.5 and

μ ϵ= 2 for the two-band system are presented togheter with the lines
for α = 0.2, 0.5 and μ = 0 for the one-band system (thin grey lines)
as references. Different interband (Josephson-like) couplings are
reported: λ = 0.0512 panel (a); λ = 0.1512 panel (b); λ = 0.2512

panel (c).

Figure 8. Crossover boundary diagram for the gap Δ EF2 2 as a

function of the cutoff frequency ω EF0 2 to which correspond

condensate fractions α2 = 0.2, 0.5 and chemical potential μ ϵ= 2 in
the two-band system with ϵ2 = 0.5, λ λ λ= =11 12 21 = 0.15. The lines
for the one-band system (thin grey lines) for the gap Δ EF to which
correspond condensate fractions α = 0.2, 0.5 and chemical potential
μ = 0 are also reported for reference. Inset: value of the Δ EF2 2

when μ ϵ= 2. The points Δ EF2 2 = 0.5, 1.0 and 2.5 correspond

respectively to the experimental values reported in [7], [32] and [33].
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is out of the chosen range (Δ ∼E 6F2 2 presented in the inset).
In figure 8 we report for comparison the available experi-
mental values of the ratio Δ EF2 2 for iron-based super-
conductors measured by ARPES. In the case of FeSexTe −x1

the gap to EF ratio in the small upper band is Δ ≈EF2 2 0.5 for
=x 0.35 [7] while for x = 0.40 is Δ ≈EF2 2 1.0 [32]. On the

other hand very recent ARPES results give Δ ≈EF2 2 2.5 for
LiFe −x1 CoxAs (x = 0) and a negative chemical potential with
a finite gap for the same compound with 1 % and 3 % Co-
doping [33]. The Δ EF2 2 data points are reported in figure 8
with two arrows to indicate that the characteristic energy scale
of the pairing interaction is not known, but that it is of the
order of or larger than the (local) Fermi energy of the upper
band, having a pairing of electronic origin.

Therefore, the central result of our work is that: (i) the
superconducting iron chalcogenides are in the middle of the
crossover regime of the BCS–BEC crossover, while (ii) Co-
doped iron-pnictide superconductors are close to the BEC
regime, with the BEC character being more pronounced for
increasing Co-doping.

Our conclusion is that the two-band system with
moderate intraband coupling for Δ< <E0.55 4F2 2 is in
the crossover regime of the BCS–BEC crossover for any
choice of pairing λ22

eff and cutoff frequency ω EF0 2 considered
in this paper. As a consequence the crossover region of the
two-band system is wider than that of the one-band system.
On the other hand, only extreme values of Δ >EF2 2 4 and
very large values of ω EF0 2 (plausible for pairing glue having
an electronic origin) will drive the system toward the BEC
regime for the partial condensate in the upper band.

We will now discuss our results on the average size of the
Cooper pairs in the two bands ( ξkF pair,11 and ξkF pair,22 ). The
ratio between the two gaps Δ Δ2 1 will also be reported as
being a quantity directly comparable with experiments. We
consider here two cases in the crossover regime in figure 8:

(i) for Δ EF2 2 = 1 and ω EF0 2 = 2.5 we obtain ξkF pair,11

= 8.4 and ξkF pair,22 = 1.2 with a ratio Δ Δ2 1 = 4. In this
situation we have extended overlapping Cooper pairs in band
1 and molecular-like bosonic pairs in band 2. The total
condensate is a coherent mixture of Cooper pairs and (almost)
point-like molecular pairs.

(ii) for Δ EF2 2 = 0.5, and also ω EF0 2 = 2.5, the results
are less extreme. We obtain ξkF pair,11 = 10.6 and ξkF pair,22

= 2.2, with a ratio Δ Δ2 1 = 2.5. The Cooper pairs in band 2
start to overlap and the corresponding partial condensate is in
the middle of the crossover regime between BCS and BEC
(indeed in figure 8 the experimental point Δ EF2 2 = 0.5 is very
close to the line α = 0.5 indicating the center of the crossover
regime). This second case is very close to the experimental
findings for the superconductor Ba0.6K0.4Fe2As2 as reported
in [14]. (Δ1 = 6 meV, Δ2 = 12 meV.)

We conclude with an observation concerning the results
that we obtain by increasing the bottom band energy of the
upper band. For ϵ EF2 1 = 0.7 (and same choice of λ11 = 0.15,
λ λ=12 21 = 0.05, 0.15 and 0.25) the BCS boundary line and
the center of the crossover line for the partial condensate in
the upper band (α2 = 0.2 and 0.5 respectively) are almost not

affected by the different choice of ϵ EF2 1, as the correspond-
ing values of the gap not much affected. On the other hand the
boundary line μ ϵ− 2 = 0 is placed to larger values of the
coupling λ22

eff and of the cutoff frequency ω EF0 2, and the
corresponding gap Δ ∼EF2 2 7 is also larger than in the case
ϵ EF2 1 = 0.5. One possible reason for this (unexpected) result
is that the increased separation ϵ2 between the bands leads to a
larger density in band 1, determining a slower variation of the
chemical potential μ for increasing coupling.

4. Conclusions

We have analyzed the ground state superconducting proper-
ties of one- and two-band systems of fermions interacting
through a separable attractive potential with an energy cutoff.

For the one-band system we have analyzed the behaviour
of the superconducting gap, condensate fraction and pair
correlation length as a function of coupling for different
values of the cutoff. We have found that our model system
gives expected results both in the weak- and in the strong-
coupling limits. The pair correlation length and the super-
conducting gap recover the BCS limit for weak interactions,
and the chemical potential approaches half of the binding
energy of a bound state of two fermions in the BEC limit. By
choosing three values for the condensate fraction we have
defined the boundaries of the BCS, crossover and BEC
regime of the BCS–BEC crossover, and we have determined
the corresponding boundary values for the superconducting
gap and for the pair correlation length. The superconducting
gap to Fermi energy ratio is the most accessible physical
quantity that can be measured in experiments. We have found
that when the ratio between the gap and the Fermi energy is in
the range Δ< <E0.55 1.3F the system is in the crossover
regime of the BCS–BEC crossover for every value of the
coupling and of the energy cutoff. Therefore this connection
between Δ EF and the crossover regime is not associated with
the particular microscopic structure of the pairing interaction.
The ratio Δ EF results in a useful detection parameter to
characterize the regime of the pairing of a superconductor,
locating it in the BCS–BEC crossover.

For the two-band system we have analyzed the crossover
boundary diagrams for the partial condensate fraction in the
upper band and for the change of sign of the chemical
potential relative to the bottom of the upper band. Different
values of the interband coupling have been considered,
assuming a weak-coupling regime of pairing in the lower
band. We found that for increasing values of the interband
coupling the access to the crossover regime is progressively
anticipated with respect to the one-band case. The BEC
regime for the partial condensate fraction is not reached in our
range of coupling and energy cutoff because the presence of
the lower band locks the chemical potential, retarding the
change of sign of the chemical potential relative to the bottom
of the upper band, and preventing the two-band system from
accessing the BEC regime, thus widening the crossover
regime of the BCS–BEC crossover.
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In conclusion, our work gives a simple and quite general
theoretical support to the recent ARPES measurements in
iron-based superconductors which provide evidence that the
Cooper pairs in the small Fermi surface form a condensate
which is at the border between the crossover and the BEC
regime. Therefore, the BCS–BEC crossover seems to be
clearly realized in this new class of high-Tc superconductors.
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