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Abstract. The proof of the Luttinger theorem, which was originally given for a normal Fermi liquid with
equal spin populations formally described by the exact many-body theory at zero temperature, is here
extended to an approximate theory given in terms of a “conserving” approximation also with spin imbal-
anced populations. The need for this extended proof, whose underlying assumptions are here spelled out in
detail, stems from the recent interest in superfluid trapped Fermi atoms with attractive inter-particle inter-
action, for which the difference between two spin populations can be made large enough that superfluidity
is destroyed and the system remains normal even at zero temperature. In this context, we will demon-
strate the validity of the Luttinger theorem separately for the two spin populations for any “Φ-derivable”
approximation, and illustrate it in particular for the self-consistent t-matrix approximation.

1 Introduction

The theory of normal Fermi liquids deals with a homoge-
neous system of interacting fermions in the normal phase
close to the absolute zero of temperature in an essentially
exact way, by expressing thermodynamic and dynamical
quantities of interest in terms of a few phenomenological
parameters [1,2]. These could, in principle, be calculated
in terms of exact quantities of many-body theory, like the
single-particle self-energy of the Dyson equation and the
irreducible kernel of the two-particle Bethe-Salpeter equa-
tion [1–3]. In practice, however, to calculate these quan-
tities approximations have unavoidably to be made. The
question then arises whether a given approximation may
lead to unphysical violations of conservations laws or of
important constraints.

In particular, one constraint that characterizes a Fermi
liquid is the so-called Luttinger’s sum rule (or Luttinger’s
theorem), which states that the volume enclosed by the
Fermi surface of the interacting system is directly propor-
tional to the particle density [4]. And since the particle
density is unaffected by the inter-particle interaction, the
radius of the Fermi surface of the interacting system co-
incides with the Fermi wave vector of the non-interacting
one [5]. The proof of this theorem given in references [4,5],
as well as in the more recent works [6,7], holds for the ex-
act theory, and an important question is again what hap-
pens to it when approximations are adopted in realistic
calculations.

Approximations that are known to respect conserva-
tion laws are the so-called “conserving” approximations

a e-mail: giancarlo.strinati@unicam.it

introduced by Baym and Kadanoff [8,9], whereby cer-
tain classes of diagrams for the single-particle self-energy
have to be taken together. These diagrams, in turn, con-
tain the single-particle Green’s functions which are self-
consistently expressed in terms of the self-energy itself.
A sufficient condition to select these classes of diagrams
is to generate the single-particle self-energy through a
functional Φ, by taking the functional derivative of Φ
with respect to the single-particle Green’s function (“Φ-
derivable” approximations) [9]. In addition, one finds it
stated that a Φ-derivable approximation satisfies the Lut-
tinger’s sum rule [10], since the original proof of this sum
rule for the exact theory was also based on the existence
of an exact functional Φ and can thus apply when an ap-
proximate form of Φ is introduced like in a Φ-derivable
approximation.

Recently, interest in Luttinger’s theorem has arisen in
the context of imbalanced Fermi gases, in which the two
spin components σ = (↑, ↓) have different densities nσ.
Originally, this interest was stimulated by novel experi-
mental studies of superfluid trapped Fermi atoms [11,12],
for which imbalanced populations can be maintained in-
dependently of the orbital degrees of freedom. From a
theoretical point of view, it turns out that the (non-self-
consistent) t-matrix approximation (sometimes referred to
as the G0G0 t-matrix [13]) or else its expanded NSR ver-
sion [14], which has often been used with (at least qualita-
tive) success to describe the BCS-BEC crossover for gases
with balanced populations, fails instead in the imbalanced
case when two different chemical potentials μσ are intro-
duced [15–17]. For instance, if one calculates the densities
for μ↑ > μ↓, one finds inconsistently that n↑ < n↓ in
some regions of the phase diagram [15,16]. In addition,
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although the Luttinger’s theorem does not hold for the
superfluid phase which survives for moderate spin im-
balance, its validity should be eventually restored for a
strongly polarized Fermi gas, when the difference of the
two spin populations is large enough that superfluidity is
destroyed and the system remains normal even at zero
temperature. Yet, the (non-self-consistent) t-matrix ap-
proximation with n↑ �= n↓ does not yield for the radii of
the two Fermi spheres the values one would expect by the
Luttinger’s theorem when applied separately to the two
spheres [18].

A method to correct the failure of the NSR approach
to fulfill the Luttinger’s theorem for the imbalanced case
was proposed in reference [19]. It consists in working with
the zero-temperature form of the single-particle propaga-
tor G0,σ which contains from the outset the Fermi wave
vector kσ

F related to the density nσ, instead of using the
Matsubara form of G0,σ (in the zero-temperature limit)
which instead contains the chemical potential μσ (and
thus the associated wave vector kσ

μ =
√

2mμσ, where m is
the fermion mass and � = 1 throughout).

As a matter of fact, taking into account the difference
between kμ and kF was found to be important also in
the balanced case with n↑ = n↓, for which the G0G0 t-
matrix does not shows pathological behaviors. It was, in
fact, found in reference [20] that the back-bending of the
dispersions obtained from the single-particle spectral func-
tion A(k, ω) (with wave vector k and frequency ω) occurs
at a wave vector kL (referred there to as the Luttinger
wave vector), which signals the presence of a remnant
Fermi surface even in the superfluid phase. It was further
found in reference [20] that kL remains close to the Fermi
wave vector kF but departs markedly from kμ over a wide
coupling range, even approaching the molecular limit of
the BCS-BEC crossover (this was actually the reason for
referring to kL as the Luttinger wave vector, because the
finding that the Fermi surface is (almost, in this case) un-
affected by the interaction is reminiscent of the Luttinger’s
theorem for a Fermi liquid).

The replacement of kμ by kL (�kF) in the balanced su-
perfluid case of reference [20], as well as the replacement of
kσ

μ by kσ
F in the imbalanced normal case of reference [19],

points to the need of introducing (especially for the imbal-
anced case) some sort of self-consistency in the G0G0 t-
matrix, through an appropriate dressing of the bare single-
particle propagator G0 by interaction effects. The need to
introduce at least a partial level of self-consistency in the
G0G0 t-matrix was independently raised in reference [21],
where an extended t-matrix approach was introduced both
for the balanced and the imbalanced case, which dresses
the single-particle propagator G0 closing the loop in the
self-energy Σ. For the imbalanced case, however, no work
apparently exists that employs the fully self-consistent
Green’s function method (also called the GG t-matrix or
Luttinger-Ward method [22]), where all G0 including that
closing the loop in the self-energy Σ are replaced by fully
self-consistent G. Among all the t-matrix approximations
that have been considered, this is actually the only one to
be conserving in the Baym-Kadanoff sense [8,9].

For all the above reasons, although an extension of the
proof of the Luttinger’s theorem to conserving approxima-
tions and also for different spin populations may appear
straightforward, we regard it both relevant and useful to
provide here a schematic version of this proof. This goes
through the original Luttinger’s line of arguments [4,5]
and emphasises the non-trivial assumptions underneath,
having specifically in mind the self-consistent GG t-matrix
approximation for imbalanced Fermi systems.

2 Proof of the Luttinger’s theorem
for conserving approximations in imbalanced
Fermi systems

We begin by considering the standard expression of the
density for fermions with spin component σ [23]

nσ =
∫

dk
(2π)3

1
β

∑
n

eiωnη Gσ(k, ωn) (1)

where k is a wave vector, ωn = (2n + 1)π/β (n integer) a
fermionic Matsubara frequency, β = (kBT )−1 the inverse
temperature (kB being the Boltzmann constant), and
η = 0+. In this expression, the single-particle propagator

Gσ(k, ωn) =
1

iωn − ξσ
k −Σσ(k, ωn)

, (2)

where ξσ
k = εk − μσ and εk = k2/(2m), contains in prin-

ciple the full self-energy Σσ of the exact theory for given
spin component. Although we have chosen to work with
the Matsubara formalism so as to introduce the chemi-
cal potentials μσ at the outset, in the following we shall
take the zero-temperature limit in such a way that the
Matsubara frequencies ωn are densely distributed and one
can replace accordingly:

1
β

∑
n

−→
∫ +∞

−∞

dω

2π
. (3)

Following reference [1], we next perform the following ma-
nipulations on equation (1). We take the logarithm of
Gσ(k, ωn) and then the derivative of the resulting expres-
sion with respect to iωn, to obtain

∂

∂ iωn
lnGσ(k, ωn) = − 1 − ∂

∂ iωn
Σσ(k, ωn)

iωn − ξσ
k −Σσ(k, ωn)

= −Gσ(k, ωn)
[
1 − ∂

∂ iωn
Σσ(k, ωn)

]
,

(4)

in such a way that equation (1) can be rewritten in the
form:

nσ =
∫

dk
(2π)3

1
β

∑
n

eiωnη

[
− ∂

∂ iωn
lnGσ(k, ωn)

+ Gσ(k, ωn)
∂

∂ iωn
Σσ(k, ωn)

]
. (5)
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Fig. 1. First few diagrammatic terms corresponding to the
functional Φ associated with the GG t-matrix approximation
for an imbalanced Fermi system. Full lines denote the self-
consistent propagators Gσ and broken lines the inter-particle
interaction v (here taken of the contact type, for which fermions
of spin σ interact only with fermions of opposite spin σ̄).

The point is now to show that the second term within
brackets on the right-hand side of equation (5) gives a
vanishing contribution to nσ, and this not only for the
exact (Fermi liquid) theory but also for any approximate
theory for Σσ (and thus for Gσ) which is Φ-derivable in the
Baym-Kadanoff sense [8,9]. For an imbalanced system, one
is then assuming that there exists a functional Φσ of G↑
and G↓ for both spin components, such that Σσ can be
obtained from a functional derivative in the form [9]:

Σσ(x1, x2) =
δΦσ

δGσ(x2, x1)
(6)

where x = (r, τ) contains the space variable r and the
imaginary time τ . A variation Gσ → Gσ + δGσ thus entails
the following variation in Φ:

δΦσ =
∫

dx1dx2
δΦσ

δGσ(x2, x1)
δGσ(x2, x1)

=
∫

dx1dx2 Σσ(x1, x2) δGσ(x2, x1)

= V β

∫
dk

(2π)3
1
β

∑
n

Σσ(k, ωn) δGσ(k, ωn) (7)

where V is the volume of the system. Specifically, in each
diagram making up Φσ one performs a variation of all Gσ

that enter the diagram, by shifting their frequency argu-
ment iω → iω + iδω0 in the zero-temperature limit, while
keeping unchanged all Gσ̄. One then claims that Φσ is left
unchanged by this variation, in such a way that:

∂Φ̃σ

∂iω
=

∫
dk

(2π)3

∫ +∞

−∞

dω

2π
Σσ(k, ω)

∂Gσ(k, ω)
∂iω

= 0 (8)

where Φ̃σ = Φσ/(V β).
In particular, this property can be shown to hold for

the GG t-matrix approximation for an imbalanced Fermi
system, for which a few diagrams that correspond to the
functional Φ̃σ are shown in Figure 1 (note that Φ̃σ is sym-
metric under the interchange σ ↔ σ̄ and has thus the same
value for both spin species). As an example, let’s consider
the second-order diagram (b) of Figure 1 which contains
two interaction lines. With the short-hand four-vector no-
tation k = (k, ωn) and Q = (Q, Ων), where Ων = 2πν/β

(ν integer) is a bosonic Matsubara frequency (also con-
sidered in the zero-temperature limit), as well as with the
summation notation

∑
k

←→
∫

dk
(2π)3

∫ +∞

−∞

dω

2π
, (9)

we write for the contribution Φ̃
(b)
σ to the functional Φ̃σ

from this diagram:

−Φ̃(b)
σ =

1
2

∑
k,k′,Q

v(Q)v(−Q)Gσ(k)Gσ(k −Q)Gσ̄(k′)

× Gσ̄(k′ + Q)

=
1
2

∑
k̃,k′,Q

v(Q)v(−Q)Gσ(k̃ + δω0)

× Gσ(k̃ + δω0 −Q)Gσ̄(k′)Gσ̄(k′ + Q)

= −Φ̃(b)
σ +

1
2

∑
k̃,k′,Q

v(Q)v(−Q)

×
[

∂Gσ(k̃)
∂iω̃

Gσ(k̃ −Q)Gσ̄(k′)Gσ̄(k′ + Q)

+Gσ(k̃)
∂Gσ(k̃ −Q)

∂iω̃
Gσ̄(k′)Gσ̄(k′ + Q)

]
iδω0

= −Φ̃(b)
σ −

⎡
⎣∑

k̃

∂Gσ(k̃)
∂iω̃

Σσ(k̃)

⎤
⎦ iδω0 (10)

to first order in δω0, where the self-energy Σσ on the right-
hand side of equation (10) corresponds to the contribution
of this particular diagram (without loss of generality, we
have here assumed for simplicity that only opposite-spin
fermions interact with each other, as it is the case for
a contact potential). The identity (8) thus holds for this
particular diagram, and independently for each spin com-
ponent. This proof can be readily extended to all other
diagrams of Figure 1, which all together are associated
with the GG t-matrix approximation of interest1.

More generally, the result (8), on which the present
derivation of the Luttinger theorem for imbalanced sys-
tems is based, remains valid for any Φ-derivable approx-
imation provided that the interaction between fermions
does not produce spin flips. This is because any approx-
imate form of Φσ contains sets of diagrams where closed
loops of Green’s functions of a given species are mutually
connected by interaction lines. In each of these loops that
correspond to the same spin species, one can single out a
common fermionic frequency integrated from −∞ to +∞,

1 Formally, the result (10) holds also for the non-self-
consistent t-matrix approximation, where all Gσ are replaced

by bare propagators G(0)
σ = (iωn − ξσ

k)−1. This result, however,
would be of no use when inserted into the right-hand side of
equation (5), where the full propagator Gσ is instead required.
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Fig. 2. Contours for evaluating the frequency sum of equation (13) in the complex ζσ-plane. The integration around the small
circles centred at μσ + iωn with ωn = (2n + 1)π/β (n = 0,±1,±2, · · · ) in (a), is first transformed into an integration along the
contour C that runs parallel to the imaginary axis in (b), and then into an integration along the contour C′ that runs parallel
to the real axis in (c).

such that a constant shift δω0 does not alter the value
of Φσ, thus implying that the equation (8) is verified2.

With the help of the result (8), the second term on the
right-hand side of the expression (5) for the density can
be manipulated as follows via an integration by parts in
the zero-temperature limit:∫

dk
(2π)3

∫ +∞

−∞

dω

2π
eiωη Gσ(k, ω)

∂Σσ(k, ω)
∂iω

=
1

2πi

∫
dk

(2π)3
Gσ(k, ω)Σσ(k, ω)|ω=+∞

ω=−∞

−
∫

dk
(2π)3

∫ +∞

−∞

dω

2π
Σσ(k, ω)

∂Gσ

∂ iω
(k, ω)

= 0 (11)

since not only the second term but also the first term of
the right-hand side of equation (11) vanishes owing to the
property Gσ(k)Σσ(k) → 0 when |ω| → ∞. In conclusion,
expression (5) reduces to the form:

nσ = −
∫

dk
(2π)3

1
β

∑
n

eiωnη ∂

∂ iωn
lnGσ(k, ωn) (12)

where, for convenience, we have restored the finite tem-
perature notation. It is convenient at this point to follow
the arguments of references [4,5] and introduce the vari-
able ζσ

n = iωn + μσ, such that Gσ(k, ωn) = [ζσ
n − εk −

Σσ(k, ωn)]−1. Equation (12) then becomes:

nσ =
∫

dk
(2π)3

1
β

∑
n

eζσ
nη ∂

∂ ζσ
n

ln[εk + Σσ(k, ζσ
n )− ζσ

n ]

(13)
2 On physical grounds, the functional Φσ should remain sym-

metric under the interchange σ ↔ σ̄ whatever the Φ-derivable
approximation, although this property is not relevant for the
present proof of the Luttinger theorem.

since ln(−z) = ln(z)±iπ. The sum over n in equation (13)
can be transformed in the usual way into an integral
over the complex variable ζσ, by recourse to the function
f(ζσ) ≡ (−β)[eβ(ζσ−μσ) + 1]−1 which has simple poles
with unit residue at ζσ

n = iωn +μσ (cf. Fig. 2a). One thus
introduces the contour C of Figure 2b which runs par-
allel to the imaginary ζσ-axis, and then deforms it into
the contour C′ of Figure 2c which runs just above and
below the real ζσ-axis, to take into account the singulari-
ties of the single-particle propagator Gσ(k, ζσ) across the
real ζσ-axis (once this is obtained from Gσ(k, ζσ

n ) through
analytic continuation). This is possible because the re-
tarded (advanced) single-particle propagator G(R)

σ (G(A)
σ )

has no singularities in the upper (lower) half ζσ-plane,
such that εk + Σ

(R)
σ (k, ζσ)− ζσ has no zero in the upper

half plane and εk + Σ
(A)
σ (k, ζσ) − ζσ has no zero in the

lower half plane. We can then write for the frequency sum
in equation (13):

1
β

∑
n

eζσ
nη ∂

∂ ζσ
n

ln[εk + Σσ(k, ζσ
n )− ζσ

n ]

=
1
β

∫
C

dζσ

2πi
eζση

(
∂

∂ ζσ
ln[εk + Σσ(k, ζσ)− ζσ]

)
f(ζσ)

= − 1
β

∫
C′

dζσ

2πi
eζση ln[εk + Σσ(k, ζσ)− ζσ]

∂f(ζσ)
∂ ζσ

=
1

2πi
{− ln[εk + �Σσ(k, ζσ = μσ)− (μσ + iη)]

+ ln[εk + �Σσ(k, ζσ = μσ)− (μσ − iη)]}
= Θ (μσ − εk −�Σσ(k, ζσ = μσ)) . (14)

Note that to obtain the last line of equation (14) that
holds for any value of k, we have: (i) used the rela-
tion − ∂

∂ z
1

eβ(z−μ)+1
= δ(z − μ) for real z in the T → 0

limit; (ii) made use of the property Σσ(k, ζσ) < 0
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(> 0) just above (below) the real axis; (iii) replaced
Σσ(k, ζσ) → ∓η = ∓0+ in the argument of the log-
arithm, to the extent that Σσ(k, ζσ = μσ) = 0 for a
Fermi liquid3; (iv) used the property limη→0 ln(a± iη) =
ln |a| ± iπΘ(−a) that holds on the principal branch of the
logarithm for any real number a, Θ being the unit step
function.

Entering the result (14) into equation (13), we obtain
eventually

nσ =
∫

dk
(2π)3

Θ (μσ − εk −�Σσ(k, ζσ = μσ)) , (15)

which shows that the total volume of k-space contribut-
ing to the particle density remains the same of the non-
interacting system, to the extent that the mean particle
density is unaffected by the inter-particle interaction. For
an isotropic system, the further assumption that the quan-
tity εk + �Σσ(k, ζσ = μσ) − μσ is an increasing function
of |k| and that εk + �Σσ(k, ζσ = μσ) − μσ = 0 has a
single solution for given σ, identifies a special value of |k|
(say, kσ

L) associated with the interacting Fermi surface.
This surface bounds the region of k-space giving a non-
vanishing contribution to the integral in equation (15), in
such a way that:

nσ =
1

(2π)3
4π

3
(kσ

L)3 . (16)

The result (16) should be compared with the expression
nσ = 1

(2π)3
4π
3 (kσ

F)3 for the non-interacting Fermi system
with Σσ = 0. This yields the desired result

kσ
L = kσ

F (17)

known as the Luttinger theorem, which states that the
radius of the Fermi surface of the interacting system co-
incides with that of the non-interacting system for each
σ-species. This completes our proof.

3 Concluding remarks

In this paper, we have extended the proof of the Luttinger
theorem, that was originally conceived for the exact theory
of a normal Fermi liquid, to any approximate theory based
on a Φ-derivable (conserving) approximation also for the
case of different spin populations. In this context, we
have been concerned, in particular, with the self-consistent
t-matrix approximation that can be used to describe a su-
perfluid Fermi system with an attractive inter-particle in-
teraction throughout the BCS-BEC crossover. In this case,
the Luttinger theorem becomes relevant when the imbal-
ance between the spin populations is large enough that
the system becomes normal even at zero temperature. In
the process, we have pointed out a number of assump-
tions that have to be verified by the approximate theory

3 The property �Σσ(k, ζσ = μσ) = 0 valid for all k char-
acterizes a Fermi liquid [1,4]. In an approximate theory using
a Φ-derivable approximation, this property has to be verified
numerically for the specific approximation of interest.

for the Luttinger theorem to hold separately for the spin
populations, and we have also identified at which stage of
the proof the non-self-consistent version of the t-matrix
approximation fails to satisfy the required assumptions.

Finally, it is worth pointing out that, although the self-
consistent t-matrix approximation, to which the Luttinger
theorem (17) applies, amounts to a truncation of the ex-
pansion of the functional Φ since it sums up only a spe-
cific subclass of skeleton diagrams, by no means can this
approximation be considered a “weak-coupling” approx-
imation in the standard sense [10]. This is because, al-
ready at the level of its non-self-consistent version, in
the balanced case the t-matrix approximation can ac-
count for the physics of the BCS-BEC crossover at fi-
nite temperature [24], whereby the system evolves from
the BCS limit of a weak inter-particle attraction when
Cooper pairs are highly overlapping, to the BEC limit of
a strong inter-particle attraction when composite bosons
are not overlapping. And also in the imbalanced case, the
non-self-consistent t-matrix approximation yields the cor-
rect result (as compared with Monte-Carlo calculations)
in the strong-coupling limit of the inter-particle interac-
tion, when considering the extreme imbalanced situation
of a single spin-↓ fermion embedded in a sea of spin-↑
fermions [25].
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